Journal of Applied Electrochemistry

, Volume 49, Issue 3, pp 251–259 | Cite as

Effect of Co(NO3)2·6H2O thermal decomposition temperature on the nano-Co3O4 product morphology and electrocatalysis of water oxidation

  • Mohammed Ameen Ahmed Qasem
  • Abuzar Khan
  • Sagheer A. OnaiziEmail author
  • Hatim Dafalla Mohamed
  • Aasif Helal
  • Md. Abdul AzizEmail author
Research Article


Herein, we report the electrochemical water oxidation efficiency of nano-Co3O4 catalyst samples obtained by the thermal decomposition of Co(NO3)2·6H2O at various temperatures (320, 420, 520, and 620 °C). The structural and morphological details of the synthesized samples were determined by employing X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. These studies revealed the formation of well-dispersed nano-Co3O4 particles with sizes, shapes, and crystallinity levels that differed for the different decomposition temperatures. The prepared catalysts were immobilized on filter-paper-derived carbon electrodes for checking their electrochemical properties. The electrochemical efficiency levels of the Co3O4 catalyst samples were evaluated by employing each of them as an anode to study the water oxidation reaction. The nano-Co3O4 sample prepared at 420 °C yielded the highest efficiency and good stability towards the water oxidation reaction. The higher efficiency of this sample was attributed to the relatively small average size and low level of agglomeration of its nanoparticles, and to the high electrochemically active surface area of its electrode.

Graphical abstract

Different morphology and crystallinity of nano-Co3O4 were prepared by simple and straightforward thermal decomposition of Co(NO3)2·6H2O for electrochemical water oxidation. The nano-Co3O4 prepared at 420 °C showed the highest efficiency and good stability towards water oxidation.


Co(NO3)2·6H2Thermal decomposition temperature Nano-cobalt oxide Filter-paper-derived carbon electrode Oxygen evolution 



The authors acknowledge the support from the Center of Research Excellence in Nanotechnology (CENT) at the Research Institute of King Fahd University of Petroleum and Minerals in the Kingdom of Saudi Arabia.


  1. 1.
    Gray HB (2009) Powering the planet with solar fuel. Nat Chem 1(1):7. CrossRefPubMedGoogle Scholar
  2. 2.
    Duan H, Li D, Tang Y, He Y, Ji S, Wang R, Lv H, Lopes PP, Paulikas AP, Li H, Mao SX, Wang C, Markovic NM, Li J, Stamenkovic VR, Li Y (2017) High-performance Rh2P electrocatalyst for efficient water splitting. J Am Chem Soc 139(15):5494–5502. CrossRefPubMedGoogle Scholar
  3. 3.
    Kudo A. Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38(1):253–278. CrossRefPubMedGoogle Scholar
  4. 4.
    Barbir F (2005) PEM electrolysis for production of hydrogen from renewable energy sources. Solar Energy 78(5):661–669. CrossRefGoogle Scholar
  5. 5.
    Zhang B, Tang X, Li Y, Xu Y, Shen W (2007) Hydrogen production from steam reforming of ethanol and glycerol over ceria-supported metal catalysts. Int J Hydrog Energy 32(13):2367–2373. CrossRefGoogle Scholar
  6. 6.
    Waheed QMK, Williams PT (2013) Hydrogen production from high temperature pyrolysis/steam reforming of waste biomass: rice husk, sugar cane bagasse, and wheat straw. Energy Fuels 27(11):6695–6704. CrossRefGoogle Scholar
  7. 7.
    May MM, Lewerenz HJ, Lackner D, Dimroth F, Hannappel T (2015) Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure. Nat Commun 6:8286. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Momeni MM, Ghayeb Y (2015) Visible light-driven photoelectrochemical water splitting on ZnO–TiO2 heterogeneous nanotube photoanodes. J Appl Electrochem 45(6):557–566. CrossRefGoogle Scholar
  9. 9.
    Zheng W, Man HW, Ye L, Tsang SCE (2017) Electroreduction of carbon dioxide to formic acid and methanol over a palladium/polyaniline catalyst in acidic solution: a study of the palladium size effect. Energy Technol 5(6):937–944. CrossRefGoogle Scholar
  10. 10.
    Roger I, Shipman MA, Symes MD (2017) Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat Rev Chem 1(1):0003. CrossRefGoogle Scholar
  11. 11.
    Du P, Eisenberg R (2012) Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: recent progress and future challenges. Energy Environ Sci 5(3):6012–6021. CrossRefGoogle Scholar
  12. 12.
    Chattopadhyay J, Srivastava R, Srivastava PK (2013) Ni-doped TiO2 hollow spheres as electrocatalysts in water electrolysis for hydrogen and oxygen production. J Appl Electrochem 43(3):279–287. CrossRefGoogle Scholar
  13. 13.
    Wang J, Cui W, Liu Q, Xing Z, Asiri AM, Sun X (2016) Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv Mater 28(2):215–230. CrossRefPubMedGoogle Scholar
  14. 14.
    Wang J, Gao Y, Chen D, Liu J, Zhang Z, Shao Z, Ciucci F (2018) Water splitting with an enhanced bifunctional double perovskite. ACS Catal 8(1):364–371. CrossRefGoogle Scholar
  15. 15.
    Aziz MA, El Madkhoum A, Hakeem AS, Shaikh MN, Rehman AU, Yamani ZH (2017) Effect of Mn precursors on the morphology and electrocatalytic activity toward water oxidation of micro-nanostructured MnOx films prepared by voltammetric deposition. J Mater Sci: Mater Electron 28(24):18463–18473. CrossRefGoogle Scholar
  16. 16.
    Najafpour MM, Renger G, Hołyńska M, Moghaddam AN, Aro EM, Carpentier R, Nishihara H, Eaton-Rye JJ, Shen JR, Allakhverdiev SI (2016) Manganese compounds as water-oxidizing catalysts: from the natural water-oxidizing complex to nanosized manganese oxide structures. Chem Rev 116(5):2886–2936. CrossRefPubMedGoogle Scholar
  17. 17.
    Mette K, Bergmann A, Tessonnier JP, Hävecker M, Yao L, Ressler T, Schlögl R, Strasser P, Behrens M (2012) Nanostructured manganese oxide supported on carbon nanotubes for electrocatalytic water splitting. ChemCatChem 4(6):851–862. CrossRefGoogle Scholar
  18. 18.
    Hamdani M, Singh R, Chartier P (2010) Co3O4 and Co-based spinel oxides bifunctional oxygen electrodes. Int J Electrochem Sci 5(4):556–577.Google Scholar
  19. 19.
    Li WY, Xu LN, Chen J (2005) Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Adv Funct Mater 15(5): 851–857. CrossRefGoogle Scholar
  20. 20.
    Wang Y, Zhou T, Jiang K, Da P, Peng Z, Tang J, Kong B, Cai W-B, Yang Z, Zheng G (2014) Reduced mesoporous Co3O4 nanowires as effi cient water oxidation electrocatalysts and supercapacitor electrodes. Adv Energy Mater 4(16):1400696. CrossRefGoogle Scholar
  21. 21.
    Ma TY, Dai S, Jaroniec M, Qiao SZ (2014) Metal–organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J Am Chem Soc 136(39):13925–13931. CrossRefPubMedGoogle Scholar
  22. 22.
    Zhang N, Fan Y, Fan H, Shao H, Wang J, Zhang J, Cao C (2012) Cross-Linked Co3O4 nanowalls synthesized by electrochemical oxidation of metallic cobalt layer for oxygen evolution. ECS Electrochem Lett 1(2):H8–H10. CrossRefGoogle Scholar
  23. 23.
    Fan Y, Zhang N, Zhang L, Shao H, Wang J, Zhang J, Cao C (2013) Synthesis of small-sized freestanding Co3O4 nanosheets with improved activity for H2O2 sensing and oxygen evolution. J Electrochem Soc 160(2):F218–F223. CrossRefGoogle Scholar
  24. 24.
    Zhou X, Xia Z, Tian Z, Ma Y, Qu Y (2015) Ultrathin porous Co3O4 nanoplates as highly efficient oxygen evolution catalysts. J Mater Chem A 3(15):8107–8114. CrossRefGoogle Scholar
  25. 25.
    Chen S, Zhao Y, Sun B, Ao Z, Xie X, Wei Y, Wang G (2015) Microwave-assisted synthesis of mesoporous Co3O4 nanoflakes for applications in lithium ion batteries and oxygen evolution reactions. ACS Appl Mater Interfaces 7(5):3306–3313. CrossRefPubMedGoogle Scholar
  26. 26.
    Fan Y, Shao H, Wang J, Liu L, Zhang J, Cao C (2011) Synthesis of foam-like freestanding Co3 O4 nanosheets with enhanced electrochemical activities. Chem Commun 47(12):3469–3471. CrossRefGoogle Scholar
  27. 27.
    Sun Y, Gao S, Lei F, Liu J, Liang L, Xie Y (2014) Atomically-thin non-layered cobalt oxide porous sheets for highly efficient oxygen-evolving electrocatalysts. Chem Sci 5(10):3976–8982. CrossRefGoogle Scholar
  28. 28.
    Zhao J, Zou Y, Zou X, Bai T, Liu Y, Gao R, Wang D, Li GD (2014) Self-template construction of hollow Co3O4 microspheres from porous ultrathin nanosheets and efficient noble metal-free water oxidation catalysts. Nanoscale 6(13):7255–7262. CrossRefPubMedGoogle Scholar
  29. 29.
    Qasem MAA, Aziz MA, Hakeem AS, Onaizi SA (2018) Preparation of nano-Co3O4 by direct thermal decomposition of cobalt(II) nitrate hexahydrate for electrochemical water oxidation. Curr Nanosci 14(2):154–159. CrossRefGoogle Scholar
  30. 30.
    Yeo BS, Bell AT (2011) Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J Am Chem Soc 133(14):5587–5593. CrossRefPubMedGoogle Scholar
  31. 31.
    Jung S, McCrory CCL, Ferrer IM, Peters JC, Jaramillo TF (2016) Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction. J Mater Chem A 4(8):3068–3076. CrossRefGoogle Scholar
  32. 32.
    Ghosh D, Giri S, Das CK (2014) Hydrothermal synthesis of platelet β Co(OH)2 and Co3O4: smart electrode material for energy storage application. Environ Prog Sustain Energy 33(3):1059–1064. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Mohammed Ameen Ahmed Qasem
    • 1
    • 2
  • Abuzar Khan
    • 1
  • Sagheer A. Onaizi
    • 2
    Email author
  • Hatim Dafalla Mohamed
    • 3
  • Aasif Helal
    • 1
  • Md. Abdul Aziz
    • 1
    Email author
  1. 1.Center of Research Excellence in Nanotechnology (CENT)King Fahd University of Petroleum and Minerals, KFUPMDhahranSaudi Arabia
  2. 2.Department of Chemical EngineeringKing Fahd University of Petroleum and Minerals, KFUPMDhahranSaudi Arabia
  3. 3.Center for Engineering Research (CER)King Fahd University of Petroleum and Minerals, KFUPMDhahranSaudi Arabia

Personalised recommendations