Advertisement

Journal of Applied Electrochemistry

, Volume 49, Issue 3, pp 261–270 | Cite as

Electrochemical sensor sensitive detection of chloramphenicol based on ionic-liquid-assisted synthesis of de-layered molybdenum disulfide/graphene oxide nanocomposites

  • Tingting Sun
  • Hongzhi PanEmail author
  • Yong MeiEmail author
  • Pan Zhang
  • Dongdong Zeng
  • Xiaoyan Liu
  • Shengzhong Rong
  • Dong Chang
Research Article
  • 233 Downloads

Abstract

A novel hybrid nanocomposite based on de-layered molybdenum disulfide (MoS2) by ionic-liquid (IL, [BMIM]BF4)-assisted exfoliation and graphene oxide (GO) was synthesized via a green, efficient, and high-quality method, which combined liquid-phase stripping method and ion-insertion method. In addition, an electrochemical sensor was developed using the MoS2-IL/GO nanocomposites for the determination of chloramphenicol (CAP). The morphology and structure of these synthetic materials were characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and X-ray diffraction and the electrochemical characterization by cyclic voltammetry and electrochemical impedance spectroscopy. Based on this method, the insertion of IL can effectively exfoliate de-layered MoS2, and the MoS2-IL/GO nanocomposite exhibit 3D structure with higher surface area, excellent electrical conductivity, and synergistic catalytic capabilities. Under optimized conditions, the sensor responded linearly to CAP ranging from 0.1 to 400 µmol L−1 and the detection limit of 0.047 µmol L−1. In addition, the sensor showed excellent stability, repeatability, reproducibility, and selectivity, and has been applied to detect CAP in eyedrops, milk, and urine samples.

Graphical abstract

Schematic of proposed electrochemical sensor.

Keywords

De-layered molybdenum disulfide Ionic liquid Graphene oxide Chloramphenicol Electrochemical sensors 

Notes

Acknowledgements

We greatly appreciate the support of the National Natural Science Foundation of China (Grant No. 81673229) and the Talent Introduce Foundation of Shanghai University of Medicine & Health Sciences (Grant No. A3-2601-18-311001).

Supplementary material

10800_2018_1271_MOESM1_ESM.docx (112 kb)
Supplementary material 1 (DOCX 111 KB)

References

  1. 1.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669.  https://doi.org/10.1126/science.1102896 CrossRefGoogle Scholar
  2. 2.
    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6(3):147–150.  https://doi.org/10.1038/nnano.2010.279 CrossRefPubMedGoogle Scholar
  3. 3.
    Albrecht D, Wulfmeier H, Ivanov S, Bund A, Fritze H (2013) Electrochemical performance of ionic liquid-molybdenum disulfide Li-ion;batteries. J Appl Electrochem 43(6):559–565.  https://doi.org/10.1007/s10800-013-0548-z CrossRefGoogle Scholar
  4. 4.
    Yuk JM, Park J, Ercius P, Kim K, Hellebusch DJ, Crommie MF, Lee JY, Zettl A, Alivisatos AP (2012) High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336(6077):61.  https://doi.org/10.1126/science.1217654 CrossRefPubMedGoogle Scholar
  5. 5.
    Guan G, Zhang S, Liu S, Cai Y, Low M, Teng CP, Phang IY, Cheng Y, Duei KL, Srinivasan BM (2015) Protein induces layer-by-layer exfoliation of transition metal dichalcogenides. J Am Chem Soc 137(19):6152–6155.  https://doi.org/10.1021/jacs.5b02780 CrossRefPubMedGoogle Scholar
  6. 6.
    Zhang W, Wang Y, Zhang D, Yu S, Zhu W, Wang J, Zheng F, Wang S, Wang J (2015) A one-step approach to the large-scale synthesis of functionalized MoS2 nanosheets by ionic liquid assisted grinding. Nanoscale 7(22):10210–10217.  https://doi.org/10.1039/c5nr02253c CrossRefPubMedGoogle Scholar
  7. 7.
    Shang NG, Papakonstantinou P, Sharma S, Lubarsky G, Li M, Mcneill DW, Quinn AJ, Zhou W, Blackley R (2012) Controllable selective exfoliation of high-quality graphene nanosheets and nanodots by ionic liquid assisted grinding. Chem Commun 48(13):1877.  https://doi.org/10.1039/c2cc17185f CrossRefGoogle Scholar
  8. 8.
    Abbasi P, Asadi M, Liu C, Sharifi-Asl S, Sayahpour B, Behranginia A, Zapol P, Shahbazian-Yassar R, Curtiss LA, Salehi-Khojin A (2017) Tailoring the edge structure of molybdenum disulfide toward electrocatalytic reduction of carbon dioxide. ACS Nano 11(1):453–460.  https://doi.org/10.1021/acsnano.6b06392 CrossRefPubMedGoogle Scholar
  9. 9.
    Kim J, Kim S (2014) Preparation and electrochemical property of ionic liquid-attached graphene nanosheets for an application of supercapacitor electrode. Electrochim Acta 119(6):11–15.  https://doi.org/10.1016/j.electacta.2013.11.187 CrossRefGoogle Scholar
  10. 10.
    Asadi M, Kumar B, Liu C, Phillips P, Yasaei P, Behranginia A, Zapol P, Klie RF, Curtiss LA, Salehi-Khojin A (2016) Cathode based on molybdenum disulfide nanoflakes for lithium-oxygen batteries. ACS Nano 10(2):2167–2175.  https://doi.org/10.1021/acsnano.5b06672 CrossRefPubMedGoogle Scholar
  11. 11.
    Lau VW, Masters AF, Bond AM, Maschmeyer T (2012) Ionic-liquid-mediated active-site control of MoS2 for the electrocatalytic hydrogen evolution reaction. Chem Eur J 18(26):8230–8239.  https://doi.org/10.1021/acsnano.5b06672 CrossRefPubMedGoogle Scholar
  12. 12.
    Tığ GA, Günendi G, Pekyardımcı Ş (2017) A selective sensor based on Au nanoparticles-graphene oxide-poly(2,6-pyridinedicarboxylic acid) composite for simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid. J Appl Electrochem 47(5):607–618.  https://doi.org/10.1007/s10800-017-1060-7 CrossRefGoogle Scholar
  13. 13.
    Wang GX, Bao WJ, Wang J, Lu QQ, Xia XH (2013) Immobilization and catalytic activity of horseradish peroxidase on molybdenum disulfide nanosheets modified electrode. Electrochem Commun 35(10):146–148.  https://doi.org/10.1016/j.elecom.2013.08.021 CrossRefGoogle Scholar
  14. 14.
    Chekin F, Teodorescu F, Coffinier Y, Pan GH, Barras A, Boukherroub R, Szunerits S (2016) MoS2/reduced graphene oxide as active hybrid material for the electrochemical detection of folic acid in human serum. Biosens Bioelectron 85:807–813.  https://doi.org/10.1016/j.bios.2016.05.095 CrossRefPubMedGoogle Scholar
  15. 15.
    Armenta S, Guardia MDL, Abad-Fuentes A, Abad-Somovilla A, Esteve-Turrillas FA (2016) Highly selective solid-phase extraction sorbents for chloramphenicol determination in food and urine by ion mobility spectrometry. Anal Bioanal Chem 408(29):1–9.  https://doi.org/10.1007/s00216-016-9995-9 CrossRefGoogle Scholar
  16. 16.
    Kong FY, Chen TT, Wang JY, Fang HL, Fan DH, Wang W (2016) UV-assisted synthesis of tetrapods-like titanium nitride-reduced graphene oxide nanohybrids for electrochemical determination of chloramphenicol. Sens Actuators B 225:298–304.  https://doi.org/10.1016/j.snb.2015.11.041 CrossRefGoogle Scholar
  17. 17.
    Codognoto L, Winter E, Doretto KM, Monteiro GB, Rath S (2010) Electroanalytical performance of self-assembled monolayer gold electrode for chloramphenicol determination. Microchim Acta 169(3–4):345–351.  https://doi.org/10.1007/s00604-010-0339-8 CrossRefGoogle Scholar
  18. 18.
    Duan N, Wu S, Dai S, Gu H, Hao L, Ye H, Wang Z (2016) Advances in aptasensors for the detection of food contaminants. Analyst 141(13):3942–3961.  https://doi.org/10.1039/c6an00952b CrossRefPubMedGoogle Scholar
  19. 19.
    Yadav SK, Agrawal B, Chandra P, Goyal RN (2014) In vitro chloramphenicol detection in a Haemophilus influenza model using an aptamer-polymer based electrochemical biosensor. Biosens Bioelectron 55(4):337–342.  https://doi.org/10.1039/c6an00952b CrossRefPubMedGoogle Scholar
  20. 20.
    Bagheri Hashkavayi A, Bakhsh Raoof J, Ojani R, Hamidi Asl E (2015) Label-free electrochemical aptasensor for determination of chloramphenicol based on gold nanocubes-modified screen-printed gold electrode. Electroanalysis 27(6):1449–1456.  https://doi.org/10.1002/elan.201400718 CrossRefGoogle Scholar
  21. 21.
    Yan Z, Gan N, Wang D, Cao Y, Chen M, Li T, Chen Y (2015) A “signal-on’’ aptasensor for simultaneous detection of chloramphenicol and polychlorinated biphenyls using multi-metal ions encoded nanospherical brushes as tracers. Biosens Bioelectron 74(49):718–724.  https://doi.org/10.1016/j.bios.2015.07.024 CrossRefPubMedGoogle Scholar
  22. 22.
    Kara M, Uzun L, Kolayli S, Denizli A (2013) Combining molecular imprinted nanoparticles with surface plasmon resonance nanosensor for chloramphenicol detection in honey. J Appl Polym Sci 129(4):2273–2279.  https://doi.org/10.1002/app.38936 CrossRefGoogle Scholar
  23. 23.
    Satínský D, Chocholous P, Salabová M, Solich P (2015) Simple determination of betamethasone and chloramphenicol in a pharmaceutical preparation using a short monolithic column coupled to a sequential injection system. J Sep Sci 29(16):2494–2499.  https://doi.org/10.1002/jssc.200600204 CrossRefGoogle Scholar
  24. 24.
    Govindasamy M, Chen SM, Mani V, Devasenathipathy R, Umamaheswari R, Joseph Santhanaraj K, Sathiyan A (2017) Molybdenum disulfide nanosheets coated multiwalled carbon nanotubes composite for highly sensitive determination of chloramphenicol in food samples milk, honey and powdered milk. J Colloid Interface Sci 485:129–136.  https://doi.org/10.1016/j.jcis.2016.09.029 CrossRefPubMedGoogle Scholar
  25. 25.
    Abnous K, Danesh NM, Ramezani M, Emrani AS, Taghdisi SM (2016) A novel colorimetric sandwich aptasensor based on an indirect competitive enzyme-free method for ultrasensitive detection of chloramphenicol. Biosens Bioelectron 78:80–86.  https://doi.org/10.1016/j.bios.2015.11.028 CrossRefPubMedGoogle Scholar
  26. 26.
    Karthik R, Govindasamy M, Chen SM, Mani V, Lou BS, Devasenathipathy R, Hou YS, Elangovan A (2016) Green synthesized gold nanoparticles decorated graphene oxide for sensitive determination of chloramphenicol in milk, powdered milk, honey and eye drops. J Colloid Interface Sci 475:46–56.  https://doi.org/10.1016/j.jcis.2016.04.044 CrossRefPubMedGoogle Scholar
  27. 27.
    Chen J, Li Y, Huang L, Li C, Shi G (2015) High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process. Carbon 81(1):826–834.  https://doi.org/10.1016/j.carbon.2014.10.033 CrossRefGoogle Scholar
  28. 28.
    Yang G, Zhao F (2015) Electrochemical sensor for chloramphenicol based on novel multiwalled carbon nanotubes@molecularly imprinted polymer. Biosens Bioelectron 64:416–422.  https://doi.org/10.1016/j.bios.2014.09.041 CrossRefPubMedGoogle Scholar
  29. 29.
    Asadi M, Kumar B, Liu C, Phillips P, Yasaei P, Behranginia A, Zapol P, Klie RF, Curtiss LA, Salehikhojin A (2016) Cathode based on molybdenum disulfide nanoflakes for lithium–oxygen batteries. Acs Nano 10(2):2167.  https://doi.org/10.1021/acsnano.5b06672 CrossRefPubMedGoogle Scholar
  30. 30.
    Wang T, Gao D, Zhuo J, Zhu Z, Papakonstantinou P, Li Y, Li M (2013) Size-dependent enhancement of electrocatalytic oxygen-reduction and hydrogen-evolution performance of MoS2 particles. Chem Eur J 19(36):11939–11948.  https://doi.org/10.1002/chem.201301406 CrossRefPubMedGoogle Scholar
  31. 31.
    Yang T, Guan Q, Li Q, Meng L, Wang L, Liu C, Jiao K (2013) Large-area, three-dimensional interconnected graphene oxide intercalated with self-doped polyaniline nanofibers as a free-standing electrocatalytic platform for adenine and guanine. J Mater Chem B 1(23):2926–2933.  https://doi.org/10.1039/C3TB20171F CrossRefGoogle Scholar
  32. 32.
    Li J, Xie H (2012) Fabrication of gold nanoparticles/polypyrrole composite-modified electrode for sensitive hydroxylamine sensor design. J Solid State Electrochem 16(2):795–802.  https://doi.org/10.1007/s10800-012-0397-1 CrossRefGoogle Scholar
  33. 33.
    Yang R, Zhao J, Chen M, Yang T, Luo S, Jiao K (2015) Electrocatalytic determination of chloramphenicol based on molybdenum disulfide nanosheets and self-doped polyaniline. Talanta 131(131C):619–623.  https://doi.org/10.1016/j.talanta.2014.08.035 CrossRefPubMedGoogle Scholar
  34. 34.
    Alizadeh T, Ganjali MR, Zare M, Norouzi P (2012) Selective determination of chloramphenicol at trace level in milk samples by the electrode modified with molecularly imprinted polymer. Food Chem 130(4):1108–1114.  https://doi.org/10.1016/j.foodchem.2011.08.016 CrossRefGoogle Scholar
  35. 35.
    Urzúa J, Carbajo J, Yáñez C, Marco JF, Squella JA (2016) Electrochemistry and XPS of 2,7-dinitro-9-fluorenone immobilized on multi-walled carbon nanotubes. J Solid State Electrochem 20(4):1131–1137.  https://doi.org/10.1007/s10008-015-2949-x CrossRefGoogle Scholar
  36. 36.
    Zhang X, Zhang YC, Zhang JW (2016) A highly selective electrochemical sensor for chloramphenicol based on three-dimensional reduced graphene oxide architectures. Talanta 161:567.  https://doi.org/10.1016/j.talanta.2016.09.013 CrossRefPubMedGoogle Scholar
  37. 37.
    Tao Y, Huaiyin C, Tong G, Jin W, Weihua L, Kui J (2015) Highly sensitive determination of chloramphenicol based on thin-layered MoS2/polyaniline nanocomposite. Talanta 144:1324–1328.  https://doi.org/10.1016/j.talanta.2015.08.004 CrossRefGoogle Scholar
  38. 38.
    Borowiec J, Wang R, Zhu L, Zhang J (2013) Synthesis of nitrogen-doped graphene nanosheets decorated with gold nanoparticles as an improved sensor for electrochemical determination of chloramphenicol. Electrochim Acta 99:138–144.  https://doi.org/10.1016/j.electacta.2013.03.092 CrossRefGoogle Scholar
  39. 39.
    Govindasamy M, Chen SM, Mani V, Devasenathipathy R, Umamaheswari R, Santhanaraj KJ, Sathiyan A (2017) Molybdenum disulfide nanosheets coated multiwalled carbon nanotubes composite for highly sensitive determination of chloramphenicol in food samples milk, honey and powdered milk. J Colloid Interface Sci 485:129–136.  https://doi.org/10.1016/j.jcis.2016.09.029 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Tingting Sun
    • 1
  • Hongzhi Pan
    • 2
    Email author
  • Yong Mei
    • 1
    Email author
  • Pan Zhang
    • 3
  • Dongdong Zeng
    • 2
  • Xiaoyan Liu
    • 2
  • Shengzhong Rong
    • 3
  • Dong Chang
    • 4
  1. 1.Key Laboratory of Occupational Hazard Identification and Control, Public Health SchoolWuhan University of Science and TechnologyWuhanChina
  2. 2.Collaborative Research CenterShanghai University of Medicine & Health SciencesShanghaiChina
  3. 3.Public Health SchoolHarbin Medical UniversityHarbinChina
  4. 4.Department of Clinical Laboratory, Shanghai Pudong HospitalFudan University Pudong Medical CenterShanghaiChina

Personalised recommendations