Advertisement

Journal of Applied Electrochemistry

, Volume 48, Issue 9, pp 973–984 | Cite as

Atomic layer deposition of TiO2 for stabilization of Pt nanoparticle oxygen reduction reaction catalysts

  • W. Wilson McNeary
  • Audrey E. Linico
  • Chilan Ngo
  • Sarah van Rooij
  • Sophia Haussener
  • Megan E. Maguire
  • Svitlana Pylypenko
  • Alan W. Weimer
Research Article
  • 236 Downloads
Part of the following topical collections:
  1. Fuel cells

Abstract

Atomic layer deposition (ALD) was used to modify two different types of carbon black-based Pt oxygen reduction catalysts with protective TiO2 nanostructures to increase catalyst durability. Rates of ALD growth and the structure of deposited TiO2 were observed to be highly dependent on oxygen content of the catalyst substrate. Electrochemical durability was enhanced with the addition of TiO2 ALD nanostructures, with up to 70% retention in mass activity measured over accelerated durability testing. High-temperature treatment of the top-performing ALD catalyst, which was found to promote structural rearrangement of the TiO2 and Pt phases into hybrid nanoparticles, yielded a twofold increase in activity but was detrimental to durability.

Graphical Abstract

Keywords

Fuel cells Atomic layer deposition Platinum Oxygen reduction reaction Durability 

Notes

Acknowledgements

The authors would like to acknowledge financial support from the National Science Foundation Graduate Research Fellowship (DGE 1144083), as well as Fredrick Luiszer for ICP-OES analysis.

Compliance with ethical standards

Conflict of interest

A.W. Weimer has a significant financial interest in ALD Nanosolutions, Inc.

Supplementary material

10800_2018_1226_MOESM1_ESM.docx (3.2 mb)
Supplementary material 1 (DOCX 3229 KB)

References

  1. 1.
    Takenaka SM, Nakagawa H, Matsune K, Tanabe H, Kishida E, M (2007) Improvement in the durability of Pt electrocatalysts by coverage with silica layers. J Phys Chem C Lett 111:15133–15136CrossRefGoogle Scholar
  2. 2.
    Takenaka S, Matsumori H, Matsune H, Tanabe E, Kishida M (2008) High durability of carbon nanotube-supported Pt electrocatalysts covered with silica layers for the cathode in a PEMFC. J Electrochem Soc 155(9):B929.  https://doi.org/10.1149/1.2952665 CrossRefGoogle Scholar
  3. 3.
    Kocha SS (2012) Electrochemical degradation: electrocatalyst and support durability. In: Mench MM, Kumbur EC, Veziroglu TN (eds) Polymer electrolyte fuel cell degradation. Elsevier, WalthamGoogle Scholar
  4. 4.
    Lu J, Elam JW, Stair PC (2016) Atomic layer deposition—sequential self-limiting surface reactions for advanced catalyst “bottom-up” synthesis. Surf Sci Rep 71(2):410–472.  https://doi.org/10.1016/j.surfrep.2016.03.003 CrossRefGoogle Scholar
  5. 5.
    Feng H, Lu J, Stair PC, Elam JW (2011) Alumina over-coating on Pd nanoparticle catalysts by atomic layer deposition: enhanced stability and reactivity. Catal Lett 141(4):512–517.  https://doi.org/10.1007/s10562-011-0548-8 CrossRefGoogle Scholar
  6. 6.
    Liang X, Li J, Yu M, McMurray CN, Falconer JL, Weimer AW (2011) Stabilization of supported metal nanoparticles using an ultrathin porous shell. ACS Catal 1(10):1162–1165.  https://doi.org/10.1021/cs200257p CrossRefGoogle Scholar
  7. 7.
    Gould TD, Izar A, Weimer AW, Falconer JL, Medlin JW (2014) Stabilizing Ni catalysts by molecular layer deposition for harsh, dry reforming conditions. ACS Catal 4(8):2714–2717.  https://doi.org/10.1021/cs500809w CrossRefGoogle Scholar
  8. 8.
    Lu J, Fu B, Kung MC, Xiao G, Elam JW, Kung HH, Stair PC (2012) Coking- and sintering-resistant palladium catalysts achieved through atomic layer deposition. Science 335(6073):1205–1208CrossRefGoogle Scholar
  9. 9.
    Cheng N, Banis MN, Liu J, Riese A, Li X, Li R, Ye S, Knights S, Sun X (2015) Extremely stable platinum nanoparticles encapsulated in a zirconia nanocage by area-selective atomic layer deposition for the oxygen reduction reaction. Adv Mater 27(2):277–281.  https://doi.org/10.1002/adma.201404314 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Marichy C, Ercolano G, Caputo G, Willinger MG, Jones D, Rozière J, Pinna N, Cavaliere S (2016) ALD SnO2 protective decoration enhances the durability of a Pt based electrocatalyst. J Mater Chem A 4(3):969–975.  https://doi.org/10.1039/c5ta08432f CrossRefGoogle Scholar
  11. 11.
    Wang YJ, Wilkinson DP, Zhang J (2011) Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts. Chem Rev 111(12):7625–7651.  https://doi.org/10.1021/cr100060r CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Cheng K, Jiang M, Ye B, Amiinu IS, Liu X, Kou Z, Li W, Mu S (2016) Three-dimensionally costabilized metal catalysts toward an oxygen reduction reaction. Langmuir 32(9):2236–2244.  https://doi.org/10.1021/acs.langmuir.5b03625 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Dhanasekaran P, Vinod Selvaganesh S, Bhat SD (2016) Nitrogen and carbon doped titanium oxide as an alternative and durable electrocatalyst support in polymer electrolyte fuel cells. J Power Sources 304:360–372.  https://doi.org/10.1016/j.jpowsour.2015.11.045 CrossRefGoogle Scholar
  14. 14.
    Chung S, Choun M, Jeong B, Lee JK, Lee J (2016) Atomic layer deposition of ultrathin layered TiO2 on Pt/C cathode catalyst for extended durability in polymer electrolyte fuel cells. J Energy Chem 25(2):258–264.  https://doi.org/10.1016/j.jechem.2016.01.010 CrossRefGoogle Scholar
  15. 15.
    Lubers AM, Muhich CL, Anderson KM, Weimer AW (2015) Mechanistic studies for depositing highly dispersed Pt nanoparticles on carbon by use of trimethyl(methylcyclopentadienyl)platinum(IV) reactions with O2 and H2. J Nanopart Res 17(4.  https://doi.org/10.1007/s11051-015-2982-9
  16. 16.
    Lubers AM, McNeary WW, Ludlow DJ, Drake AW, Faust M, Maguire ME, Kodas MU, Seipenbusch M, Weimer AW (2017) Proton exchange membrane fuel cell flooding caused by residual functional groups after platinum atomic layer deposition. Electrochim Acta 237:192–198.  https://doi.org/10.1016/j.electacta.2017.03.188 CrossRefGoogle Scholar
  17. 17.
    King DM, Liang X, Zhou Y, Carney CS, Hakim LF, Li P, Weimer AW (2008) Atomic layer deposition of TiO2 films on particles in a fluidized bed reactor. Powder Technol 183(3):356–363.  https://doi.org/10.1016/j.powtec.2008.01.025 CrossRefGoogle Scholar
  18. 18.
    King DM, Spencer JA, Liang X, Hakim LF, Weimer AW (2007) Atomic layer deposition on particles using a fluidized bed reactor with in situ mass spectrometry. Surf Coat Technol 201(22–23):9163–9171.  https://doi.org/10.1016/j.surfcoat.2007.05.002 CrossRefGoogle Scholar
  19. 19.
    Shinozaki K, Zack JW, Richards RM, Pivovar BS, Kocha SS (2015) Oxygen reduction reaction measurements on platinum electrocatalysts utilizing rotating disk electrode technique. J Electrochem Soc 162(10):F1144-F1158.  https://doi.org/10.1149/2.1071509jes CrossRefGoogle Scholar
  20. 20.
    Garsany Y, Baturina OA, Swider-Lyons KE, Kocha SS (2010) Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction. Anal Chem 82:6321–6328CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Huong Nguyen TG, Anh Pham TV, Phuong TX, Binh Lam TX, Tran VM, Thoa Nguyen TP (2013) Nano-Pt/C electrocatalysts: synthesis and activity for alcohol oxidation. Adv Nat Sci 4(3):035008.  https://doi.org/10.1088/2043-6262/4/3/035008 CrossRefGoogle Scholar
  22. 22.
    Beard BC, Ross PN (1986) Characterization of a titanium-promoted supported platinum electrocatalyst. J Electrochem Soc 133(9):1839–1845CrossRefGoogle Scholar
  23. 23.
    Kawasoe Y, Tanaka S, Kuroki T, Kusaba H, Ito K, Teraoka Y, Sasaki K (2007) Preparation and electrochemical activities of Pt–Ti alloy PEFC electrocatalysts. J Electrochem Soc 154(9):B969.  https://doi.org/10.1149/1.2756369 CrossRefGoogle Scholar
  24. 24.
    Ding E, More KL, He T (2008) Preparation and characterization of carbon-supported PtTi alloy electrocatalysts. J Power Sour 175(2):794–799.  https://doi.org/10.1016/j.jpowsour.2007.10.010 CrossRefGoogle Scholar
  25. 25.
    Duan H, Hao Q, Xu C (2015) Hierarchical nanoporous PtTi alloy as highly active and durable electrocatalyst toward oxygen reduction reaction. J Power Sour 280:483–490.  https://doi.org/10.1016/j.jpowsour.2015.01.136 CrossRefGoogle Scholar
  26. 26.
    Kim J, Yang S, Lee H (2016) Platinum–titanium intermetallic nanoparticle catalysts for oxygen reduction reaction with enhanced activity and durability. Electrochem Commun 66:66–70.  https://doi.org/10.1016/j.elecom.2016.03.007 CrossRefGoogle Scholar
  27. 27.
    Park H-Y, Jeon T-Y, Lee K-S, Yoo SJ, Sung Y-E, Jang JH (2016) Carbon-supported ordered Pt–Ti alloy nanoparticles as durable oxygen reduction reaction electrocatalyst for polymer electrolyte membrane fuel cells. J Electrochem Sci Technol 7(4):269–276.  https://doi.org/10.5229/jecst.2016.7.4.269 CrossRefGoogle Scholar
  28. 28.
    Li J, Liang X, King DM, Jiang Y-B, Weimer AW (2010) Highly dispersed Pt nanoparticle catalyst prepared by atomic layer deposition. Appl Catal B 97(1–2):220–226.  https://doi.org/10.1016/j.apcatb.2010.04.003 CrossRefGoogle Scholar
  29. 29.
    Tran R, Xu Z, Radhakrishnan B, Winston D, Sun W, Persson KA, Ong SP (2016) Surface energies of elemental crystals. Sci Data 3:160080.  https://doi.org/10.1038/sdata.2016.80 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderUSA
  2. 2.Department of ChemistryColorado School of MinesGoldenUSA
  3. 3.Institute of Mechanical EngineeringEcole Polytechnique Federale de LausanneLausanneSwitzerland

Personalised recommendations