Skip to main content

Advertisement

Log in

Antimony/reduced graphene oxide composites as advanced anodes for potassium ion batteries

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The abundance of sodium and potassium elements in the earth has trigged great research interests in Na-ion and K-ion batteries. Compared to Li-ion batteries, slashed fabrication cost has been predicated for Na-ion and K-ion batteries, making them promising candidates for stationary energy storage. Potassium ion has a much larger radius than that of lithium ion, which would lead to a more severe volume change during K ions insertion. An intriguing question is whether the electrode optimization strategies developed in Li-ion batteries could be extended to K-ion batteries. In this study, Sb is used as a model alloy anode to explore the effect of nanocarbon incorporation on the cyclic stability. Through the preparation of Sb/reduced graphene oxide composite electrode, a reversible capacity of over 300 mAh/g is obtained with decent capacity retention. In contrast, neat Sb shows a fast capacity fading due to the volume expansion during alloying with K ions. This study suggests that the preparation of alloy/nanocarbon composite remains an effective approach in developing advanced anodes for K-ion batteries.

Graphical Abstract

Schematic of the materials synthesis process: (a) GO precursor; (b) Adsorption of Sb3+ on the surface of GO and (c) thermal annealing to reduce GO (into -rGO) and SbCl3 (into Sb) nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wu X, Leonard DP, Ji X (2017) Emerging non-aqueous potassium-ion batteries: challenges and opportunities. Chem Mater 29:5031–5042

    Article  CAS  Google Scholar 

  2. Tarascon JM (2010) Is lithium the new gold? Nat Chem 2:510. https://doi.org/10.1038/nchem.680

    Article  CAS  PubMed  Google Scholar 

  3. Grey CP, Tarascon JM (2017) Sustainability and in situ monitoring in battery development. Nat Mater 16:45–56

    Article  CAS  Google Scholar 

  4. Larcher D, Tarascon J (2014) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29

    Article  CAS  PubMed  Google Scholar 

  5. Bie X, Kubota K, Hosaka T et al (2017) A novel K-ion battery: hexacyanoferrate(II)/graphite cell. J Mater Chem A 5:4325–4330

    Article  CAS  Google Scholar 

  6. Xue L, Li Y, Gao H et al (2017) Low-cost high-energy potassium cathode. J Am Chem Soc 139:2164–2167

    Article  CAS  PubMed  Google Scholar 

  7. Chihara K, Katogi A, Kubota K, Komaba S (2017) KVPO4F and KVOPO4 toward 4 volt-class potassium-ion batteries. Chem Commun 53:5208–5211

    Article  CAS  Google Scholar 

  8. Wang X, Xu X, Niu C et al (2016) Earth abundant Fe/Mn-based layered oxide interconnected nanowires for advanced K-ion full batteries. Nano Lett. https://doi.org/10.1021/acs.nanolett.6b04611

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jian Z, Luo W, Ji X (2015) Carbon electrodes for K-ion batteries. J Am Chem Soc 137:11566–11569

    Article  CAS  PubMed  Google Scholar 

  10. Luo W, Wan J, Ozdemir B et al (2015) Potassium ion batteries with graphitic materials. Nano Lett 15:7671–7677

    Article  CAS  PubMed  Google Scholar 

  11. Xu J, Dou Y, Wei Z et al (2017) Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)-ion batteries. Adv Sci. https://doi.org/10.1002/advs.201700146

    Article  Google Scholar 

  12. Jian Z, Hwang S, Li Z et al (2017) Hard-soft composite carbon as a long-cycling and high-rate anode for potassium-ion batteries. Adv Funct Mater 27:1700324

    Article  CAS  Google Scholar 

  13. Share K, Cohn AP, Carter R et al (2016) Role of nitrogen-doped graphene for improved high-capacity potassium ion battery anodes. ACS Nano 10:9738–9744

    Article  CAS  PubMed  Google Scholar 

  14. Yang J, Ju Z, Jiang Y et al (2017) Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv Mater 30:1700104

    Article  CAS  Google Scholar 

  15. Kim H, Kim JC, Bianchini M et al (2017) Recent progress and perspective in electrode materials for K-ion batteries. Adv Energy Mater 1702384:1–19

    Google Scholar 

  16. Huang J, Lin X, Tan H, Zhang B (2018) Bismuth microparticles as advanced anodes for potassium-ion battery. Adv Energy Mater. https://doi.org/10.1002/aenm.201703496

    Article  Google Scholar 

  17. McCulloch WD, Ren X, Yu M et al (2015) Potassium-ion oxygen battery based on a high capacity antimony anode. ACS Appl Mater Interfaces 7:26158–26166

    Article  CAS  PubMed  Google Scholar 

  18. Wang H, Wu X, Qi X et al (2018) Sb nanoparticles encapsulated in 3D porous carbon as anode material for lithium-ion and potassium-ion batteries. Mater Res Bull 103:32–37

    Article  CAS  Google Scholar 

  19. Xu Z, Liu X, Luo Y et al (2017) Nanosilicon anodes for high performance rechargeable batteries. Prog Mater Sci 90:1–44. https://doi.org/10.1016/j.pmatsci.2017.07.003

    Article  CAS  Google Scholar 

  20. Zhang B, Zheng Q, Huang ZD et al (2011) SnO2–graphene–carbon nanotube mixture for anode material with improved rate capacities. Carbon 49:4524–4534. https://doi.org/10.1016/j.carbon.2011.06.059

    Article  CAS  Google Scholar 

  21. Xiong X, Wang G, Lin Y et al (2016) Enhancing sodium ion battery performance by strongly binding nanostructured Sb2S3 on sulfur-doped graphene sheets. ACS Nano 10:10953–10959. https://doi.org/10.1021/acsnano.6b05653

    Article  CAS  PubMed  Google Scholar 

  22. Zhao B, Liu R, Cai X et al (2014) Nanorod-like Fe2O3/graphene composite as a high-performance anode material for lithium ion batteries. J Appl Electrochem 44:53–60. https://doi.org/10.1007/s10800-013-0599-1

    Article  CAS  Google Scholar 

  23. Jia J, Kan CM, Lin X et al (2014) Effects of processing and material parameters on synthesis of monolayer ultralarge graphene oxide sheets. Carbon 77:244–254. https://doi.org/10.1016/j.carbon.2014.05.027

    Article  CAS  Google Scholar 

  24. Zhang B, Deschamps M, Ammar M et al (2017) Laser synthesis of hard carbon for anodes in Na-ion battery. Adv Mater Technol. https://doi.org/10.1002/admt.201600227

    Article  Google Scholar 

Download references

Acknowledgements

The project was financially supported by the Fundamental Research Funds for the Central Universities (Project Code: FRF-TP-17-001A1) and the Youth Technology Innovation Fund of SINOMA (Project Code: 2017-642).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingjing Jia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1557 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Jia, J., Wu, Y. et al. Antimony/reduced graphene oxide composites as advanced anodes for potassium ion batteries. J Appl Electrochem 48, 1115–1120 (2018). https://doi.org/10.1007/s10800-018-1224-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-018-1224-0

Keywords

Navigation