Journal of Applied Electrochemistry

, Volume 48, Issue 7, pp 811–817 | Cite as

Carbon/tin oxide composite electrodes for improved lithium-ion batteries

  • Yunchao Li
  • Alan M. Levine
  • Jinshui Zhang
  • Richard J. Lee
  • Amit K. Naskar
  • Sheng Dai
  • M. Parans Paranthaman
Research Article
Part of the following topical collections:
  1. Batteries


Tin and tin oxide-based electrodes are promising high-capacity anodes for lithium-ion batteries. However, poor capacity retention is the major issue with these materials due to the large volumetric expansion that occurs when lithium is alloyed with tin during lithiation and delithiation process. Here, a method to prepare a low-cost, scalable carbon and tin(II) oxide composite anode is reported. The composite material was prepared by ball milling of carbon recovered from used tire powders with 25 wt% tin(II) oxide to form lithium-ion battery anode. With the impact of energy from the ball milling, tin oxide powders were uniformly distributed inside the pores of waste-tire-derived carbon. During lithiation and delithiation, the carbon matrix can effectively absorb the volume expansion caused by tin, thereby minimizing pulverization and capacity fade of the electrodes. The as-synthesized anode yielded a capacity of 690 mAh g−1 after 300 cycles at a current density of 40 mA g−1 with a stable battery performance.

Graphical abstract

A method to prepare low-cost carbon/tin (II) oxide (SnO) composite by ball milling is reported. SnO powders are uniformly distributed inside the carbon matrix, which could effectively absorb the volume expansion of Sn and alleviate capacity fade. The anode yields a capacity of 690 mAh g−1 after 300 cycles.


Lithium-ion batteries (LIBs) Composite carbon anodes Tin oxide Waste tire recycling Ball milling 



This research was sponsored by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division.


  1. 1.
    Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359CrossRefGoogle Scholar
  2. 2.
    Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Etacheri V, Marom R, Elazari R et al (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243CrossRefGoogle Scholar
  4. 4.
    Li Y, Fu GY, Watson M et al (2016) Monodispersed Li4Ti5O12 with controlled morphology as high power lithium ion battery anodes. ChemNanoMat 2:642CrossRefGoogle Scholar
  5. 5.
    Kraytsberg A, Ein-Eli Y (2012) Higher, stronger, better… A review of 5 Volt cathode materials for advanced lithium-ion batteries. Adv Energy Mater 2:922CrossRefGoogle Scholar
  6. 6.
    Song J, Shin DW, Lu YH et al (2012) Role of oxygen vacancies on the performance of Li[Ni0.5−xMn1.5+x]O4 (x = 0, 0.05, and 0.08) spinel cathodes for lithium-ion batteries. Chem Mater 24:3101CrossRefGoogle Scholar
  7. 7.
    Kawai H, Nagata M, Tukamoto H, West AR (1998) A new lithium cathode LiCoMnO4: toward practical 5 V lithium batteries. Electrochem Solid State Lett 1:212CrossRefGoogle Scholar
  8. 8.
    Dimesso L, Forster C, Jaegermann W et al (2012) Developments in nanostructured LiMPO4 (M = Fe, Co, Ni, Mn) composites based on three dimensional carbon architecture. Chem Soc Rev 41:5068CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 8:500CrossRefGoogle Scholar
  10. 10.
    Yang Y, Zheng G, Misra S et al (2012) High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries. J Am Chem Soc 134:15387CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wang H, Yang Y, Liang Y et al (2011) Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett 11:2644CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Manthiram A, Fu Y, Chung SH et al (2014) Rechargeable lithium-sulfur batteries. Chem Rev 114:11751CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Girishkumar G, McCloskey B, Luntz AC et al (2010) Lithium–air battery: promise and challenges. J Phys Chem Lett 1:2193CrossRefGoogle Scholar
  14. 14.
    Hu Y-Y, Liu Z, Nam K-W et al (2013) Origin of additional capacities in metal oxide lithium-ion battery electrodes. Nat Mater 12:1130CrossRefGoogle Scholar
  15. 15.
    Luntz AC, McCloskey BD (2014) Nonaqueous Li-air batteries: a status report. Chem Rev 114:11721CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Li YC, Wan S, Veith GM et al (2016) A novel electrolyte salt additive for lithium-ion batteries with voltages greater than 4.7 V. Adv Energy Mater 7:1601397CrossRefGoogle Scholar
  17. 17.
    Xu K (2014) Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 114:11503CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Xu K, Zhang SS, Jow TR (2005) LiBOB as additive in LiPF[sub 6]-based lithium ion electrolytes. Electrochem Solid-State Lett 8:A365CrossRefGoogle Scholar
  19. 19.
    Derrien G, Hassoun J, Panero S, Scrosati B (2007) Nanostructured Sn–C composite as an advanced anode material in high-performance lithium-ion batteries. Adv Mater 19:2336CrossRefGoogle Scholar
  20. 20.
    Park CM, Kim JH, Kim H, Sohn HJ (2010) Li-alloy based anode materials for Li secondary batteries. Chem Soc Rev 39:3115CrossRefGoogle Scholar
  21. 21.
    Park M-S, Kang Y-M, Wang G-X et al (2008) The effect of morphological modification on the electrochemical properties of SnO2 nanomaterials. Adv Funct Mater 18:455CrossRefGoogle Scholar
  22. 22.
    Chen XT, Wang KX, Zhai YB et al (2014) A facile one-pot reduction method for the preparation of a SnO/SnO2/GNS composite for high performance lithium ion batteries. Dalton Trans 43:3137CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Liu L, Xie F, Lyu J et al (2016) Tin-based anode materials with well-designed architectures for next-generation lithium-ion batteries. J Power Sour 321:11CrossRefGoogle Scholar
  24. 24.
    Demir-Cakan R, Hu Y-S, Antonietti M et al (2008) Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties. Chem Mater 20:1227CrossRefGoogle Scholar
  25. 25.
    Zhang W-M, Hu J-S, Guo Y-G et al (2008) Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv Mater 20:1160CrossRefGoogle Scholar
  26. 26.
    Yu Y, Gu L, Zhu C et al (2009) Tin nanoparticles encapsulated in porous multichannel carbon microtubes: preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries. J Am Chem Soc 131:15984CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Zhao Y, Li X, Yan B et al (2015) Significant impact of 2D graphene nanosheets on large volume change tin-based anodes in lithium-ion batteries: a review. J Power Sour 274:869CrossRefGoogle Scholar
  28. 28.
    Zhang L, Zhao K, Yu R et al (2017) Phosphorus enhanced intermolecular interactions of SnO2 and graphene as an ultrastable lithium battery anode. Small 13:1603973CrossRefGoogle Scholar
  29. 29.
    Huang X, Cui S, Chang J et al (2015) A hierarchical tin/carbon composite as an anode for lithium-ion batteries with a long cycle life. Angew Chem Int Ed 54:1490CrossRefGoogle Scholar
  30. 30.
    Tian Q, Zhang Z, Yang L, Hirano S-i (2015) Three-dimensional wire-in-tube hybrids of tin dioxide and nitrogen-doped carbon for lithium ion battery applications. Carbon 93:887CrossRefGoogle Scholar
  31. 31.
    Danon B, van der Gryp P, Schwarz CE, Görgens JF (2015) A review of dipentene (dl-limonene) production from waste tire pyrolysis. J Anal Appl Pyrol 112:1CrossRefGoogle Scholar
  32. 32.
    Naskar AK, Bi Z, Li Y et al (2014) Tailored recovery of carbons from waste tires for enhanced performance as anodes in lithium-ion batteries. RSC Adv 4:38213CrossRefGoogle Scholar
  33. 33.
    Li Y, Adams RA, Arora A et al (2017) Sustainable potassium-ion battery anodes derived from waste-tire rubber. J Electrochem Soc 164:A1234CrossRefGoogle Scholar
  34. 34.
    Li Y, Paranthaman MP, Akato K et al (2016) Tire-derived carbon composite anodes for sodium-ion batteries. J Power Sour 316:232CrossRefGoogle Scholar
  35. 35.
    Jeong S-K, Inaba M, Iriyama Y et al (2002) Surface film formation on a graphite negative electrode in lithium-ion batteries: AFM study on the effects of co-solvents in ethylene carbonate-based solutions. Electrochim Acta 47:1975Google Scholar
  36. 36.
    Jeong S-K, Inaba M, Iriyama Y et al (2008) Interfacial reactions between graphite electrodes and propylene carbonate-based solutions: electrolyte-concentration dependence of electrochemical lithium intercalation reaction. J Power Sour 175:540CrossRefGoogle Scholar
  37. 37.
    Lee JY, Zhang R, Liu Z (2000) Dispersion of Sn and SnO on carbon anodes. J Power Sour 90:70CrossRefGoogle Scholar
  38. 38.
    Wang X, Zhou X, Yao K et al (2011) A SnO2/graphene composite as a high stability electrode for lithium ion batteries. Carbon 49:133CrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  • Yunchao Li
    • 1
    • 2
  • Alan M. Levine
    • 4
  • Jinshui Zhang
    • 1
  • Richard J. Lee
    • 4
  • Amit K. Naskar
    • 2
    • 3
  • Sheng Dai
    • 1
  • M. Parans Paranthaman
    • 1
    • 2
  1. 1.Chemical Sciences DivisionOak Ridge National LaboratoryOak RidgeUSA
  2. 2.The Bredesen Center for Interdisciplinary Research and Graduate EducationThe University of TennesseeKnoxvilleUSA
  3. 3.Materials Science and Technology DivisionOak Ridge National LaboratoryOak RidgeUSA
  4. 4.RJ Lee GroupMonroevilleUSA

Personalised recommendations