Skip to main content
Log in

Deposition mechanism of aluminum on uranium in AlCl3-1-ethyl-3-methylimidazolium chloride ionic liquid by galvanic displacement

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Aluminum (Al) coatings, which are found to be dendrites, have been deposited on uranium (U) substrate in ionic liquid via galvanic displacement. Interestingly, a dense Al nano-layer has formed between the Al dendrites and the U substrate. In this work, the growth mechanism of the Al coating has been investigated by ultraviolet–visible spectroscopy, scanning electron microscopy, grazing incidence X-ray diffraction, and electrochemical measurements: the galvanic reaction sees the oxidation of U from the substrate while Al2Cl7 are reduced on its surface, driven by the electrochemical potential difference between Al and U. Furthermore, we have found that the Al nano-layer passivates the uranium surface, which is proved to be the rate limiting step in the galvanic deposition process; the observation of the interface morphology evolution process indicates that this Al nano-layer grows in a three-dimensional mode. This work demonstrates a convenient approach to deposit dense Al nano-layer on U, without any external power source.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lee DJ, Lee HS (2006) Microelectron Reliab 46:1194

    Google Scholar 

  2. Liu FM, Green. M (2004) J Mater Chem 14:1526

    Article  CAS  Google Scholar 

  3. Neves HP, Kudrle TD, Chen JM, Adams SG, Maharbiz M, Lopatin S, MacDonald NC (1998) MRS Proc 546:139

    Article  Google Scholar 

  4. Yeh JLA, Jiang H, Neves HP, Tien NC (2008) J Microelectromech S 9:281

    Article  Google Scholar 

  5. Shacham-Diamand Y, Sverdlov Y (2000) Microelectron Eng 50:525

    Article  CAS  Google Scholar 

  6. Abbott AP, Frisch G, Hartley J, Karim WO, Ryder KS (2015) Prog Nat Sci Mater 25:595

    Article  CAS  Google Scholar 

  7. Abbott AP, Frisch G, Ryder KS (2013) Annu Rev Mater Res 43:335

    Article  CAS  Google Scholar 

  8. Wang YC, Lin JY, Han Wang C, Huang PL, Lee SL, Chang JK (2014) RSC Adv 4:35298

    Article  CAS  Google Scholar 

  9. Falola BD (2015) I. I. Suni. Curr. Opin. Solid State Mater Sci 19:77

    Article  CAS  Google Scholar 

  10. DaRosa CP, Iglesia E, Maboudian. R (2008) J Electrochem Soc 155:244

    Article  CAS  Google Scholar 

  11. DaRosa CP, Maboudian R, Iglesia. E (2008) J Electrochem Soc 155:70

    Article  CAS  Google Scholar 

  12. DaRosa CP, Maboudian R, Iglesia E (2009) Electrochim Acta 54:3270

    Article  CAS  Google Scholar 

  13. Abbott AP, Nandhra S, Postlethwaite S, Smith EL, Ryde KS (2007) Phys Chem Chem Phys 9:3735

    Article  CAS  PubMed  Google Scholar 

  14. Lahiri A, Borisenko N, Olschewski M, Gustus R, Zahlbach J, Endres F (2015) Angew Chem Int Ed 54:11870

    Article  CAS  Google Scholar 

  15. Jiang YD, Ding JJ, Luo LZ, Shi P, Wang XL (2017) Surf Coat Technol 309:980

    Article  CAS  Google Scholar 

  16. Egert CM, Scott. DG (1987) J Vac Sci Technol A 5:2724

    Article  CAS  Google Scholar 

  17. Wilkes JS, Levisky JA, Wilson RA, Hussey CL (1982) Inorg Chem 21:1263

    Article  CAS  Google Scholar 

  18. Jiang YD, Luo LZ, Wang SF, Bing R, Zhang GK, Wang XL (2018) Appl Surf Sci 427:528

    Article  CAS  Google Scholar 

  19. Jiang T, Brym MJC, Dubé G, Lasia A, Brisard GM (2006) Surf Coat Technol 201:1

    Article  CAS  Google Scholar 

  20. Falola BD, Suni. II (2014) J Electrochem Soc 161:107

    Article  CAS  Google Scholar 

  21. Luo YR (2007) Comprehensive hand book of chemical bond energies. CRC Press, Boca Raton

    Book  Google Scholar 

  22. Johnson AJ, Shreir LL (1965) Corros Sci 5:269

    Article  CAS  Google Scholar 

  23. Carraro C, Maboudian R, Magagnin L (2007) Surf Sci Rep 62:499

    Article  CAS  Google Scholar 

  24. Landolt D (1987) Electrochim Acta 32:1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Ling, Prof. Zhang, Colleague Xiandong Meng and Anyi Yin for technical support. And this work is supported by the National Natural Science Foundation of China (No. 11404295), National Key Scientific Apparatus Development of Special Item of China (No. 2012YQ130125) and the Disipline Development Foundation of China Academy of Engineering and Physics (No. 2015B0301065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Fang, L., Luo, L. et al. Deposition mechanism of aluminum on uranium in AlCl3-1-ethyl-3-methylimidazolium chloride ionic liquid by galvanic displacement. J Appl Electrochem 48, 827–834 (2018). https://doi.org/10.1007/s10800-018-1204-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-018-1204-4

Keywords

Navigation