Journal of Applied Electrochemistry

, Volume 48, Issue 10, pp 1121–1129 | Cite as

Multi-colored electrochromic devices based on mixed mono- and bi-substituted 4,4′-bipyridine derivatives containing an ester group

  • Chun-Rong Zhu
  • Jun-Fei Long
  • Qian Tang
  • Cheng-Bin Gong
  • Xiang-Kai Fu
Research Article


This paper aims to develop a multi-colored electrochromic device based on mixed mono- and bi-substituted 4,4′-bipyridine derivatives containing an ester group. A series of these derivatives were synthesized, and their electrochemical and electrochromic properties were studied through cyclic voltammetry and ultraviolet–visible spectroscopy. The mono- and bi-substituted 4,4′-bipyridine derivatives containing an ester group displayed different onset bias and colored state. Mono-substituted 4,4′-bipyridine derivatives showed a magenta colored state at an onset bias of − 1.3 V; bi-substituted 4,4′-bipyridine derivatives showed violet colored states at an onset bias of − 0.8 V. A multi-colored electrochromic device was achieved by mixing mono- and bi-substituted 4,4′-bipyridine derivatives as the electrochromic layer.

Graphical Abstract


Electrochromic materials Multicolored electrochromic device Viologens Mono-substituted 4,4′-bipyridine derivatives containing an ester group Bi-substituted 4,4′-bipyridine derivatives containing an ester group 



The authors would like to thank Chongqing Science and Technology Commission (cstc2017shmsA0104), Chongqing City Board of Education (CY170220 and CY170205) and the National Natural Science Foundation of China (20872121) for the financial support for this research.

Supplementary material

10800_2018_1190_MOESM1_ESM.docx (2.8 mb)
Supplementary material 1 (DOCX 2855 KB)


  1. 1.
    He T, Yao JM (2007) Photochromic materials based on tungsten oxide. J Mater Chem 17:4547–4557CrossRefGoogle Scholar
  2. 2.
    Belser P, De Cola L, Hartl F, Adamo V, Bozic B, Chriqui Y, Iyer VM, Jukes RTF, Kuhni J, Querol M, Roma S, Salluce N (2006) Photochromic switches incorporated in bridging ligands: a new tool to modulate energy-transfer processes. Adv Funct Mater 16:195–208CrossRefGoogle Scholar
  3. 3.
    Seeboth A, Lotzsch D, Ruhmann R, Muehling O (2014) Thermochromic polymers-function by design. Chem Rev 114:3037–3068CrossRefGoogle Scholar
  4. 4.
    Li RH, Xiao SZ, Li Y, Lin QF, Zhang RH, Zhao J, Yang CY, Zou K, Li DS, Yi T (2014) Polymorphism-dependent and piezochromic luminescence based on molecular packing of a conjugated molecule. Chem Sci 5:3922–3928CrossRefGoogle Scholar
  5. 5.
    Mortimer RJ (1999) Organic electrochromic materials. Electrochim Acta 44:2971–2981CrossRefGoogle Scholar
  6. 6.
    Gugliermetti F, Bisegna F (2003) Visual and energy management of electrochromic windows in mediterranean climate. Build Environ 38:479–492CrossRefGoogle Scholar
  7. 7.
    Granqvista CG, Azensb A, Heszlerc P, Kishd LB, Osterlund L (2007) Nanomaterials for benign indoor environments: electrochromics for “Smart Windows”, sensors for air quality, and photo-catalysts for air cleaning. Sol Energy Mater Sol Cells 91:355–365CrossRefGoogle Scholar
  8. 8.
    Sonmez G (2005) Polymeric electrochromics. Chem Commun 41:5251–5259CrossRefGoogle Scholar
  9. 9.
    Osterholm AM, Shen DE, Kerszulis JA, Bulloch RH, Kuepfert M, Dyer AL, Reynolds JR (2015) Four shades of brown: tuning of electrochromic polymer blends toward high-contrast eyewear. ACS Appl Mater Interfaces 7:1413–1421CrossRefGoogle Scholar
  10. 10.
    Scherer MRJ, Muresan NM, Steiner U, Reisner E (2013) RYB tri-colour electrochromism based on a molecular cobaloxime. Chem Commun 49:10453–10455CrossRefGoogle Scholar
  11. 11.
    Corr D, Bach U, Fay D, Kinsella M, McAtamney C, O’Reilly F, Rao SN, Stobie N (2003) Coloured electrochromic “Paper-quality” displays based on modified mesoporous electrodes. Solid State Ion 165:315–321CrossRefGoogle Scholar
  12. 12.
    Lampert CM (2003) Large-area smart glass and integrated photovoltaics. Sol Energy Mater Sol Cells 76:489–499CrossRefGoogle Scholar
  13. 13.
    Xia XH, Ku ZL, Zhou D, Zhong Y, Zhang YQ, Wang YD, Huang MJ, Tu JP, Fan HJ (2016) Perovskite solar cell powered electrochromic batteries for smart windows. Mater Horiz 3:588–595CrossRefGoogle Scholar
  14. 14.
    Runnerstrom EL, Llordes A, Lounis SD, Milliron DJ (2014) Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals. Chem Commun 50:10555–10572CrossRefGoogle Scholar
  15. 15.
    Dyer AL, Bulloch RH, Zhou YH, Kippelen B, Reynolds JR, Zhang FL (2014) A vertically integrated solar-powered electrochromic window for energy efficient buildings. Adv Mater 26:4895–4900CrossRefGoogle Scholar
  16. 16.
    Tavares PF, Gaspar AR, Martins AG, Frontini F (2014) Evaluation of electrochromic windows impact in the energy performance of buildings in mediterranean climates. Energy Policy 67:68–81CrossRefGoogle Scholar
  17. 17.
    Tavares P, Bernardo H, Gaspar A, Martins A (2016) Control criteria of electrochromic glasses for energy savings in mediterranean buildings refurbishment. Sol Energy 134:236–250CrossRefGoogle Scholar
  18. 18.
    Chen WK, Hu CW, Hsu CY, Ho KC (2009) A study on the electrochromic properties of polyaniline/silica composite films with an enhanced optical contrast. Electrochim Acta 54:4408–4415CrossRefGoogle Scholar
  19. 19.
    da Silva AJC, Nogueira FAR, Tonholo J, Ribeiro AS (2011) Dual-type electrochromic device based on polypyrrole and polythiophene derivatives. Sol Energy Mater Sol Cells 95:2255–2259CrossRefGoogle Scholar
  20. 20.
    Yao DD, Field MR, O’Mullane AP, Kalantar-zadeh K, Ou JZ (2013) Electrochromic properties of TiO2 nanotubes coated with electrodeposited MoO3. Nanoscale 5:10353–10359CrossRefGoogle Scholar
  21. 21.
    Lin F, Nordlund D, Weng TC, Moore RG, Gillaspie DT, Dillon AC, Richards RM, Engtrakul C (2013) Hole doping in Al-containing nickel oxide materials to improve electrochromic performance. Appl Mater Interfaces 5:301–309CrossRefGoogle Scholar
  22. 22.
    De Paolia MA, Casalbore-Miceli G, Girotto EM, Gazotti WA (1999) All polymeric solid state electrochromic devices. Electrochim Acta 44:2983–2991CrossRefGoogle Scholar
  23. 23.
    Ikeda T, Higuchi M (2011) Electrochromic properties of polythiophene polyrotaxane film. Langmuir 27:4184–4189CrossRefGoogle Scholar
  24. 24.
    Takagi S, Makuta S, Veamatahau A, Otsuka Y, Tachibana Y (2012) Organic/inorganic hybrid electrochromic devices based on photoelectrochemically formed polypyrrole/TiO2 nanohybrid films. J Mater Chem 22:22181–22189CrossRefGoogle Scholar
  25. 25.
    Lin KW, Ming SL, Zhen SJ, Liu HT, Chen S, Zhao Y, Gu H, Xu JK, Lu BY (2016) Dibenzothiophene-thiophene hybrid electrochromic polymer: effect of media on electrosynthesis and optical properties. J Solid State Electrochem 20:1369–1376CrossRefGoogle Scholar
  26. 26.
    Mortimer RJ, Varley TS (2011) Novel color-reinforcing electrochromic device based on surface-confined ruthenium purple and solution-phase methyl viologen. Chem Mater 23:4077–4082CrossRefGoogle Scholar
  27. 27.
    Li M, Wei YX, Zheng JM, Zhu D, Xu CY (2014) Highly contrasted and stable electrochromic device based on well-matched viologen and triphenylamine. Org Electron 15:428–434CrossRefGoogle Scholar
  28. 28.
    Deng J, Fu XK, Wang G, Wu L, Huang J (2012) The synthesis and electrochemical study of new electrochromic materials vinylbipyridinium derivatives. Electrochim Acta 85:195–202CrossRefGoogle Scholar
  29. 29.
    Cinnsealach R, Boschloo G, Rao SN, Fitzmaurice D (1999) Coloured electrochromic windows based on nanostructured TiO2 films modified by adsorbed redox chromophores. Sol Energy Mater Sol Cells 57:107–125CrossRefGoogle Scholar
  30. 30.
    Chen PY, Chen CS, Yeh TH (2014) Organic multiviologen electrochromic cells for a color electronic display application. J Appl Polym Sci 131:40485Google Scholar
  31. 31.
    Sydam R, Deepa M, Joshi AG (2013) A novel 1,10-bis[4-(5,6-dimethyl-1H-benzimidazole-1-yl)butyl]-4,4′-bipyridinim dibromide (viologen) for a high contrast electrochromic device. Org Electron 14:1027–1036CrossRefGoogle Scholar
  32. 32.
    Choi SY, Mamak M, Coombs N, Chopra N, Ozin GA (2004) Electrochromic performance of viologen-modified periodic mesoporous nanocrystalline anatase electrodes. Nano Lett 4:1231–1235CrossRefGoogle Scholar
  33. 33.
    Sun XW, Wang JX (2008) Fast switching electrochromic display using a viologen-modified ZnO nanowire array electrode. Nano Lett 8:1884–1889CrossRefGoogle Scholar
  34. 34.
    Gadgil B, Damlin P, Ääritalo T, Kvarnström C (2014) Electrosynthesis of viologen cross-linked polythiophene in ionic liquid and its electrochromic properties. Electrochim Acta 133:268–274CrossRefGoogle Scholar
  35. 35.
    Gadgil B, Damlin P, Dmitrieva E, Aaritaloa T, Kvarnstrom C (2015) ESR/UV-Vis-NIR spectroelectrochemical study and electrochromic contrast enhancement of a polythiophene derivative bearing a pendant viologen. RSC Adv 5:42242–42249CrossRefGoogle Scholar
  36. 36.
    Durben S, Baumgartner T (2011) 3,7-Diazadibenzo-phosphole oxide: a phosphorus-bridged viologen analogue with significantly lowered reduction threshold. Angew Chem Int Ed 50:7948–7952CrossRefGoogle Scholar
  37. 37.
    Stolar M, Borau-Garcia J, Toonen M, Baumgartner T (2015) Synthesis and tunability of highly electron-accepting, N-benzylated “phosphaviologens”. J Am Chem Soc 137:3366–3371CrossRefGoogle Scholar
  38. 38.
    Murakami K, Ohshita J, Inagi S, Tomita I (2015) Synthesis, and optical and electrochemical properties of germanium-bridged viologen. Electrochemistry 83:605–608CrossRefGoogle Scholar
  39. 39.
    Kao SY, Kawahara Y, Nakatsuji S, Ho KC (2015) Achieving a large contrast, low driving voltage, and high stability electrochromic device with a viologen chromophore. J Mater Chem C 3:3266–3272CrossRefGoogle Scholar
  40. 40.
    Alesanco Y, Viñuales A, Palenzuela J, Odriozola I, Cabañero G, Rodriguez J, Tena-Zaera R (2016) Multicolor electrochromics: rainbow-like devices. ACS Appl Mater Interfaces 8:14795–14801CrossRefGoogle Scholar
  41. 41.
    Sakano T, Ito F, Ono T, Hirata O, Ozawa M, Nagamura T (2010) Synthesis and electrochromic properties of a highly water-soluble hyperbranched polymer viologen. Thin Solid Films 519:1458–1463CrossRefGoogle Scholar
  42. 42.
    Wang GM, Fu XK, Deng J, Huang XM, Miao Q (2013) Electrochromic and spectroelectrochemical properties of novel 4,4′-bipyridilium-TCNQ anion radical complexes. Chem Phys Lett 579:105–110CrossRefGoogle Scholar
  43. 43.
    Wang G, Fu XK, Huang J, Wu CL, Wu L, Du QL (2011) Synthesis of a new star-shaped 4,4′-bipyridine derivative and its multicolor solid electrochromic devices. Org Electron 12:1216–1222CrossRefGoogle Scholar
  44. 44.
    Ryu JH, Park MS, Suh KD (2007) Effect of particle diameter on the electro-optical property of reflective electrochromic display based on monodisperse viologen-modified polymeric microspheres. Colloid Polym Sci 285:1675–1681CrossRefGoogle Scholar
  45. 45.
    Jordao N, Cabrita L, Pina F, Branco LC (2014) Novel bipyridinium ionic liquids as liquid electrochromic devices. Chem Eur J 20:3982–3988CrossRefGoogle Scholar
  46. 46.
    Ryu JH, Lee YH, Suh KD (2008) Preparation of a multicolored reflective electrochromic display based on monodisperse polymeric microspheres with N-substituted viologen pendants. J Appl Polym Sci 107:102–108CrossRefGoogle Scholar
  47. 47.
    Gong CB, He LH, Long JF, Liu LT, Liu S, Tang Q, Fu XK (2016) Synthesis and characterisation of azobenzene-bridged cationic-cationic and neutral-cationic electrochromic materials. Synth Met 220:147–154CrossRefGoogle Scholar
  48. 48.
    He LH, Wang GM, Tang Q, Fu XK, Gong CB (2014) Synthesis and characterization of novel electrochromic and photoresponsive materials based on azobenzene-4,4′-dicarboxylic acid dialkyl ester. J Mater Chem C 2:8162–8169CrossRefGoogle Scholar
  49. 49.
    Kao SY, Lu HC, Kung CW, Chen HW, Chang TH, Ho KC (2016) Thermally cured dual functional viologen-based all-in-one electrochromic devices with panchromatic modulation. ACS Appl Mater Interfaces 8:4175–4184CrossRefGoogle Scholar
  50. 50.
    Long JF, Tang Q, Lv Z, Zhu CR, Fu XK, Gong CB (2017) Synthesis and characterization of dual-colored electrochromic materials based on 4′-(4-alkyl ester)-4,2′:6′,4′’-terpyridinium derivatives. Electrochim Acta 248:1–10CrossRefGoogle Scholar
  51. 51.
    Kuo TH, Hsu CY, Lee KM, Ho KC (2009) All-solid-state electrochromic device based on poly(butylviologen), prussian blue, and succinonitrile. Sol Energy Mater Sol Cells 93:1755–1760CrossRefGoogle Scholar
  52. 52.
    Oh H, Seo DG, Yun TY, Kim CY, Moon HC (2017) Voltage-tunable multicolor, sub-1.5 V, flexible electrochromic devices based on ion gels. ACS Appl Mater Interfaces 9:7658–7665CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical EngineeringSouthwest UniversityChongqingChina

Personalised recommendations