Advertisement

Journal of Applied Electrochemistry

, Volume 48, Issue 6, pp 663–674 | Cite as

Lithium iron phosphate electrode semi-empirical performance model

  • B. Rajabloo
  • A. Jokar
  • W. Wakem
  • M. Désilets
  • G. Brisard
Research Article
  • 115 Downloads

Abstract

The galvanostatic performance of a pristine lithium iron phosphate (LFP) electrode is investigated. Based on the poor intrinsic electronic conductivity features of LFP, an empirical variable resistance approach is proposed for the single particle model (SPM). The increasing resistance behavior observed at the end of discharge process of LFP batteries can be justified by the increased ohmic resistance, a resistive-reactant feature of LFP as the positive electrode active materials. The model is validated for two different laboratory made Li/LFP coin cells: a high-energy and a high-power configuration. Comparisons between the experimental results and the model predictions reveal that a variable resistance is successful to tackle the increasing overpotential.

Graphical Abstract

Schematic of the coated LFP active material particles in (a) beginning of discharge with well-connected particles, (b) end of discharge with poor-connected particles

Keywords

Lithium-ion battery Single particle model Lithium iron phosphate Parameter estimation 

List of symbols

\(c_{{s,k}}^{{\max }}\)

Maximum concentration of Li+ in the particle of positive electrode (mol m−3)

\({D_{s,p}}\)

Li+ diffusion coefficient in the particle of positive electrode (m2 s−1)

\(F\)

Faraday’s constant (C mol−1)

\(I\)

Applied current density, (A m−2)

\({K_k}\)

Reaction rate constant of electrode k (k = p,n), (m2.5 mol−0.5 s−1)

P

Unknown parameter vector

\(R\)

Universal gas constant (J mol−1 K−1)

\({R_p}\)

Radius of the particles of positive electrode (m)

\({S_k}\)

Total electroactive area of electrode k (k = p,n) (m2)

\(SO{C_p}\)

State of charge of positive electrode

\(SO{C_{p,ini}}\)

Initial state of charge of positive electrode

\(t\)

Time (s)

\(T\)

Absolute temperature (K)

\({U_p}\)

Open-circuit potential of positive electrode (V)

\({V_p}\)

Total volume of positive electrode (m3)

\({{\text{V}}_{cell}}\)

Model’s estimation of the cell potential (V)

Greek

\({\varepsilon _p}\)

Volume fraction of active material

\({\delta _p}\)

Dimensionless flux of lithium ion at positive electrode

\({\lambda _k}\)

The kth eigenvalue

Subscripts

\(ini\)

Initial state

\(p\)

Positive electrode

\(n\)

Negative electrode

\(s\)

Solid phase

Notes

Acknowledgements

The authors are very grateful to Hydro-Québec and to the Natural Sciences and Engineering Council of Canada (NSERC) for their financial support.

References

  1. 1.
    Ravet N, Goodenough JB, Besner S, Simoneau M, Hovington P, Armand M (1999) In 96th Meeting of the Electrochemical Society, Vol. 99–2, Abstract, # 127, HawaiGoogle Scholar
  2. 2.
    Ravet N, Chouinard Y, Magnan JF, Besner S, Gauthier M, Armand M (2001) Electroactivity of natural and synthetic triphylite. J Power Sources 97:503–507CrossRefGoogle Scholar
  3. 3.
    Yamada A, Chung SC, Hinokuma K (2001) Optimized LiFePO4 for lithium battery cathodes., J Electrochem Soc 148(3):A224-A229CrossRefGoogle Scholar
  4. 4.
    Delacourt C, Poizot P, Levasseur S, Masquelier C (2006) Size effects on carbon-free LiFePO4 powders the key to superior energy density. Electrochem. Solid-State Lett 9:A352–A355CrossRefGoogle Scholar
  5. 5.
    Islam MS, Driscoll DJ, Fisher CA, Slater PR (2005) Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. Chem Mater 17(20):5085–5092CrossRefGoogle Scholar
  6. 6.
    Morgan D, Van der Ven A, Ceder G (2004) Li conductivity in Li x MPO 4 (M = Mn, Fe, Co, Ni) olivine materials. Electrochem Solid-State Lett 7(2):A30–A32CrossRefGoogle Scholar
  7. 7.
    Chen G, Song X, Richardson TJ (2006) Electron microscopy study of the LiFePO4 to FePO4 phase transition. Electrochem Solid-State Lett 9(6):A295–A298Google Scholar
  8. 8.
    Munakata H, Takemura B, Saito T, Kanamura K (2012) Evaluation of real performance of LiFePO4 by using single particle technique. J Power Sources 217:444–448CrossRefGoogle Scholar
  9. 9.
    Huang H, Yin SC, Nazar LF (2001) Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem Solid-State Lett 4(10):A170–A172CrossRefGoogle Scholar
  10. 10.
    Laffont L, Delacourt C, Gibot P, Wu MY, Kooyman P, Masquelier C, Tarascon JM (2006) Study of the LiFePO4/FePO4 two-phase system by high-resolution electron energy loss spectroscopy. Chem Mater 18(23):5520–5529CrossRefGoogle Scholar
  11. 11.
    Laffont NN, Nikolowski K, Baehtz C, Bramnik KG, Ehrenberg H (2007) Phase transitions occurring upon lithium insertion-extraction of LiCoPO4. Chem Mater 19(4):908–915CrossRefGoogle Scholar
  12. 12.
    Brunetti G, Robert D, Bayle-Guillemaud P, Rouviere JL, Rauch EF, Martin JF, Colin JF, Bertin F, Cayron C (2011) Confirmation of the domino-cascade model by LiFePO4/FePO4 precession electron diffraction. Chem Mater 23(20):4515–4524CrossRefGoogle Scholar
  13. 13.
    Chueh WC, Gabaly FE, Sugar JD, Bartelt NC, McDaniel AH, Fenton KR, Zavadil KR, Tyliszczak T, Lai W, McCarty KF (2013) Intercalation pathway in many-particle LiFePO4 electrode revealed by nanoscale state-of-charge mapping. Nano Lett 13(3):866–872CrossRefGoogle Scholar
  14. 14.
    Nelson Weker J, Li Y, Shanmugam R, Lai W, Chueh WC (2015) Tracking non-uniform mesoscale transport in LiFePO4 agglomerates during electrochemical cycling. ChemElectroChem 2(10):1576–1581CrossRefGoogle Scholar
  15. 15.
    Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries., J Electrochem Soc 144(4):1188–1194CrossRefGoogle Scholar
  16. 16.
    Yamada A, Koizumi H, Sonoyama N, Kanno R (2005) Phase change in LixFePO4. Electrochem. Solid-State Lett 8(8):A409–A413CrossRefGoogle Scholar
  17. 17.
    Srinivasan V, Newman J (2004) Discharge model for the lithium iron-phosphate electrode. J Electrochem Soc 151:A1517CrossRefGoogle Scholar
  18. 18.
    Kasavajjula US, Wang C, Arce PE (2008) Discharge model for LiFePO4 accounting for the solid solution range., J Electrochem Soc 155(11):A866–A874CrossRefGoogle Scholar
  19. 19.
    Dargaville S, Farrell TW (2010) Predicting active material utilization in LiFePO4 electrodes using a multiscale mathematical model. J Electrochem Soc 157(7):A830–A840CrossRefGoogle Scholar
  20. 20.
    Singh GK, Ceder G, Bazant MZ (2008) Intercalation dynamics in rechargeable battery materials: general theory and phase-transformation waves in LiFePO4. Electrochim Acta 53(26):7599–7613CrossRefGoogle Scholar
  21. 21.
    Burch D, Singh G, Ceder G, Bazant MZ (2008) Phase-transformation wave dynamics in LiFePO4. Solid State Phenom 139:95–100CrossRefGoogle Scholar
  22. 22.
    Burch D, Bazant MZ (2009) Size-dependent spinodal and miscibility gaps for intercalation in nanoparticles. Nano Lett 9(11):3795–3800CrossRefGoogle Scholar
  23. 23.
    Delmas C, Maccario M, Croguennec L, Le Cras F, Weill F (2008) Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model., Nat Mater 7(8):665–671CrossRefGoogle Scholar
  24. 24.
    Sasaki T, Ukyo Y, Novák P (2013) Memory effect in a lithium-ion battery. Nat Mater 12(6):569–575CrossRefGoogle Scholar
  25. 25.
    Thomas-Alyea KE (2008) Modeling resistive-reactant and phase-change materials in battery electrodes., ECS Trans 16(13):155–165CrossRefGoogle Scholar
  26. 26.
    Safari M, Delacourt C (2011) Mathematical modeling of lithium iron phosphate electrode: galvanostatic charge/discharge and path dependence. J Electrochem Soc 158:A63CrossRefGoogle Scholar
  27. 27.
    Safari M, Delacourt C (2011) Modeling of a commercial graphite/LiFePO[sub 4] Cell. J Electrochem Soc 158:A562–A571Google Scholar
  28. 28.
    Thorat IV (2009) Understanding performance-limiting mechanisms in Li-ion batteries for high-rate applications. Brigham Young University, ProQuest Dissertations PublishingGoogle Scholar
  29. 29.
    Farkhondeh M, Delacourt C (2012) Mathematical modeling of commercial LiFePO4 electrodes based on variable solid-state diffusivity. J Electrochem Soc 159(2):A177–A192CrossRefGoogle Scholar
  30. 30.
    Farkhondeh M, Safari M, Pritzker M, Fowler M, Han T, Wang J, Delacourt C (2014) Full-range simulation of a commercial LiFePO4 electrode accounting for bulk and surface effects: a comparative analysis. J Electrochem Soc 161:A201CrossRefGoogle Scholar
  31. 31.
    Andersson AS, Thomas JO (2001) The source of first-cycle capacity loss in LiFePO4. J Power Sources 97:498–502CrossRefGoogle Scholar
  32. 32.
    Dreyer W, Jamnik J, Guhlke C, Huth R, Moškon J, Gaberšček M (2010) The thermodynamic origin of hysteresis in insertion batteries. Nat Mater 9(5):448–453CrossRefGoogle Scholar
  33. 33.
    Dreyer W, Guhlke C, Herrmann M (2011) Hysteresis and phase transition in many-particle storage systems. Continuum Mech Thermodyn 23, 3:211–231CrossRefGoogle Scholar
  34. 34.
    Farkhondeh M, Pritzker M, Fowler M, Safari M, Delacourt C (2014) Mesoscopic modeling of Li insertion in phase-separating electrode materials: application to lithium iron phosphate. Phys Chem Chem Phys 16(41):22555–22565CrossRefGoogle Scholar
  35. 35.
    Farkhondeh M, Pritzker M, Fowler M, Delacourt C (2017) Mesoscopic modeling of a LiFePO4 electrode: experimental validation under continuous and intermittent operating conditions. J Electrochem Soc 164(11):E3040–E3053CrossRefGoogle Scholar
  36. 36.
    Wang J, Sun X (2015) Olivine LiFePO4: the remaining challenges for future energy storage. Energy Environ Sci 8(4):1110–1138CrossRefGoogle Scholar
  37. 37.
    Doyle M, Fuller M, Newman J (1993) Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J Electrochem Soc 140(6):1526–1533CrossRefGoogle Scholar
  38. 38.
    Delacourt C, Safari M (2011) Analysis of lithium deinsertion/insertion in LiyFePO4 with a simple mathematical model. Electrochim Acta 56(14):5222–5229CrossRefGoogle Scholar
  39. 39.
    Maheshwari A, Dumitrescu MA, Destro M, Santarelli M (2016) Inverse parameter determination in the development of an optimized lithium iron phosphate-Graphite battery discharge model. J Power Sources 307:160–172CrossRefGoogle Scholar
  40. 40.
    Prada E, Di Domenico D, Creff Y, Bernard J, Sauvant-Moynot V, Huet F (2012) Simplified electrochemical and thermal model of LiFePO4-graphite Li-ion batteries for fast charge applications. J Electrochem Soc 159:A1508–A1519CrossRefGoogle Scholar
  41. 41.
    Jokar A, Rajabloo B, Désilets M, Lacroix M, An inverse method for estimating the electrochemical parameters of lithium-ion batteries, part A: methodology (2016) J Electrochem Soc 163(14):A2876-A2886CrossRefGoogle Scholar
  42. 42.
    Rajabloo B, Jokar A, Désilets M, Lacroix M (2016) An inverse method for estimating the electrochemical parameters of lithium-ion batteries, Part II: implementation, J Electrochem Soc.  https://doi.org/10.1149/2.0221702jes Google Scholar
  43. 43.
    Delacourt C, Laffont L, Bouchet R, Wurm C, Leriche JB, Morcrette M, Tarascon JM, Masquelier C (2005) Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M = Fe, Mn) electrode materials. J Electrochem Soc 152(5):A913–A921CrossRefGoogle Scholar
  44. 44.
    Dominko R, Gaberscek M, Drofenik J, Bele M, Pejovnik S, Jamnik J (2003) The role of carbon black distribution in cathodes for Li ion batteries. J Power Sources 119:770–773CrossRefGoogle Scholar
  45. 45.
    Marcicki J (2012) Modeling, parametrization, and diagnostics for lithium-ion batteries with automotive applications, Dissertation, The Ohio State UniversityGoogle Scholar
  46. 46.
    Santhanagopalan S, Guo Q, Ramadass P, White RE (2006) Review of models for predicting the cycling performance of lithium ion batteries. J Power Sources 156(2):620–628CrossRefGoogle Scholar
  47. 47.
    Doyle M, Newman J, Gozdz AS, Schmutz CN, Tarascon J (1996) Comparison of modeling predictions with experimental data from plastic lithium ion cells., J Electrochem Soc 143(6):1890–1903CrossRefGoogle Scholar
  48. 48.
    Fuller TF, Doyle M, Newman J (1994) Relaxation phenomena in lithium-ion-insertion cells. J Electrochem Soc 141(4):982–990CrossRefGoogle Scholar
  49. 49.
    Atlung S, West K, Jacobsen T (1979) Dynamic aspects of solid solution cathodes for electrochemical power sources., J Electrochem Soc 126(8):1311–1321CrossRefGoogle Scholar
  50. 50.
    Haran BS, Popov BN, White RE (1998) Determination of the hydrogen diffusion coefficient in metal hydrides by impedance spectroscopy., J Power Sources 75(1):56–63CrossRefGoogle Scholar
  51. 51.
    Guo M, Sikha G, White RE (2011) Single-particle model for a lithium-ion cell: thermal behavior., J Electrochem Soc 158(2):A122–A132Google Scholar
  52. 52.
    Arora P, Doyle M, Gozdz AS, White RE, Newman J (2000) Comparison between computer simulations and experimental data for high-rate discharges of plastic lithium-ion batteries., J Power Sources 88(2):219–231CrossRefGoogle Scholar
  53. 53.
    Paxton B, Newman J (1996) Variable diffusivity in intercalation materials a theoretical approach. J Electrochem Soc 143(4):1287–1292CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical and Biotechnological EngineeringUniversité de SherbrookeSherbrookeCanada
  2. 2.Department of ChemistryUniversité de SherbrookeSherbrookeCanada

Personalised recommendations