Skip to main content
Log in

RETRACTED ARTICLE: Capacity balancing for vanadium redox flow batteries through electrolyte overflow

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

This article was retracted on 10 July 2020

This article has been updated

Abstract

The vanadium crossover through the membrane can have a significant impact on the capacity of the vanadium redox flow battery over long-term charge–discharge cycling. The different vanadium ions move unsymmetrically through the membrane and this leads to a build-up of vanadium ions in one-half cell with a corresponding decrease in the other. In this paper, a dynamic model is developed based on different crossover mechanisms (diffusion, migration and convection) for each of the four vanadium ions, water and protons in the electrolytes. With a simple to use approach, basic mass transport theory is used to simulate the transfer of vanadium ions in the battery. The model is validated with own measurements and can therefore predict the battery capacity as a function of time. This is used to analyse the battery performance by applying a continuous overflow from one-half cell to the other. Different overflow rates were analysed with regard to an impact of the performance and electrolyte stability. It was observed that a continuous overflow increases the capacity significantly but that the electrolyte stability plays an essential role using a membrane with a big vanadium crossover. Even with a good performance, a complete remixing of the tanks is necessary to prevent electrolyte precipitations.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Tang A, Bao J, Skyllas-Kazacos M (2011) Dynamic modelling of the effects of ion diffusion and side reactions on the capacity loss for vanadium redox flow battery. J Power Sources 196(24):10737–10747. https://doi.org/10.1016/j.jpowsour.2011.09.003

    Article  CAS  Google Scholar 

  2. Sun J, Shi D, Zhong H et al (2015) Investigations on the self-discharge process in vanadium flow battery. J Power Sources 294:562–568. https://doi.org/10.1016/j.jpowsour.2015.06.123

    Article  CAS  Google Scholar 

  3. Agar E, Knehr KW, Chen D et al (2013) Species transport mechanisms governing capacity loss in vanadium flow batteries: Comparing Nafion (R) and sulfonated Radel membranes. Electrochim Acta 98:66–74. https://doi.org/10.1016/j.electacta.2013.03.030

    Article  CAS  Google Scholar 

  4. Darling RM, Weber AZ, Tucker MC et al (2015) The influence of electric field on crossover in redox-flow batteries. J Electrochem Soc 163(1):A5014–A5022

    Article  Google Scholar 

  5. Oh K, Won S, Ju H (2015) A comparative study of species migration and diffusion mechanisms in all-vanadium redox flow batteries. Electrochim Acta 181:238–247. https://doi.org/10.1016/j.electacta.2015.03.012

    Article  CAS  Google Scholar 

  6. Knehr KW, Kumbur EC (2012) Role of convection and related effects on species crossover and capacity loss in vanadium redox flow batteries. Electrochem Commun 23:76–79. https://doi.org/10.1016/j.elecom.2012.07.008

    Article  CAS  Google Scholar 

  7. Ashraf Gandomi Y, Aaron DS, Mench MM (2016) Coupled membrane transport parameters for ionic species in all-vanadium redox flow batteries. Electrochim Acta 218:174–190. https://doi.org/10.1016/j.electacta.2016.09.087

    Article  CAS  Google Scholar 

  8. Agar E, Benjamin A, Dennison CR et al (2014) Reducing capacity fade in vanadium redox flow batteries by altering charging and discharging currents. J Power Sources 246(Supplement C):767–774. https://doi.org/10.1016/j.jpowsour.2013.08.023

    Article  CAS  Google Scholar 

  9. Sun CX, Chen J, Zhang HM et al (2010) Investigations on transfer of water and vanadium ions across Nafion membrane in an operating vanadium redox flow battery. J Power Sources 195(3):890–897. https://doi.org/10.1016/j.jpowsour.2009.08.041

    Article  CAS  Google Scholar 

  10. Luo QT, Li LY, Nie ZM et al (2012) In-situ investigation of vanadium ion transport in redox flow battery. J Power Sources 218:15–20. https://doi.org/10.1016/j.jpowsour.2012.06.066

    Article  CAS  Google Scholar 

  11. Sing DD, Meyers JP (2013) Direct measurement of vanadium crossover in an operating vanadium redox flow battery. Electrochem Soc 50(45):61–72. https://doi.org/10.1149/05045.0061ecst

    Article  CAS  Google Scholar 

  12. You D, Zhang H, Sun C et al (2011) Simulation of the self-discharge process in vanadium redox flow battery. J Power Sources 196(3):1578–1585. https://doi.org/10.1016/j.jpowsour.2010.08.036

    Article  CAS  Google Scholar 

  13. Sukkar T, Skyllas-Kazacos M (2003) Water transfer behaviour across cation exchange membranes in the vanadium redox battery. J Membr Sci 222(1–2):235–247. https://doi.org/10.1016/S0376-7388(03)00309-0

    Article  CAS  Google Scholar 

  14. Wang K, Liu L, Xi J et al (2017) Reduction of capacity decay in vanadium flow batteries by an electrolyte-reflow method. J Power Sources 338:17–25. https://doi.org/10.1016/j.jpowsour.2016.11.031

    Article  CAS  Google Scholar 

  15. Rudolph S, Schröder U, Bayanov IM (2013) On-line controlled state of charge rebalancing in vanadium redox flow battery. J Electroanal Chem 703(Supplement C):29–37. https://doi.org/10.1016/j.jelechem.2013.05.011

    Article  CAS  Google Scholar 

  16. Zhang Y, Liu L, Xi J et al (2017) The benefits and limitations of electrolyte mixing in vanadium flow batteries. Appl Energy 204:373–381. https://doi.org/10.1016/j.apenergy.2017.07.049

    Article  CAS  Google Scholar 

  17. Boettcher PA, Agar E, Dennison CR et al (2016) Modeling of ion crossover in vanadium redox flow batteries: a computationally-efficient lumped parameter approach for extended cycling. J Electrochem Soc 163(1):A5244–A5252. https://doi.org/10.1149/2.0311601jes

    Article  CAS  Google Scholar 

  18. Knehr KW, Agar E, Dennison CR et al (2012) A transient vanadium flow battery model incorporating vanadium crossover and water transport through the membrane. J Electrochem Soc 159(9):A1446–A1459. https://doi.org/10.1149/2.017209jes

    Article  CAS  Google Scholar 

  19. Skyllas-Kazacos M, Goh L (2012) Modeling of vanadium ion diffusion across the ion exchange membrane in the vanadium redox battery. J Membr Sci 399–400:43–48. https://doi.org/10.1016/j.memsci.2012.01.024

    Article  CAS  Google Scholar 

  20. Won S, Oh K, Ju H (2015) Numerical analysis of vanadium crossover effects in all-vanadium redox flow batteries. Electrochim Acta 177(Supplement C):310–320. https://doi.org/10.1016/j.electacta.2015.01.166

    Article  CAS  Google Scholar 

  21. Yang X-G, Ye Q, Cheng P et al (2015) Effects of the electric field on ion crossover in vanadium redox flow batteries. Appl Energy 145(Supplement C):306–319. https://doi.org/10.1016/j.apenergy.2015.02.038

    Article  CAS  Google Scholar 

  22. Watt-Smith MJ, Ridley P, Wills RGA et al (2013) The importance of key operational variables and electrolyte monitoring to the performance of an all vanadium redox flow battery. J Chem Technol Biotechnol 88(1):126–138. https://doi.org/10.1002/jctb.3870

    Article  CAS  Google Scholar 

  23. Treadwell WD, Nieriker R (1941) Über einige potentiometrische folgetitrationen von verbindungen des wolframs und molybdäns neben solchen des vanadiums und des eisens. Helv Chim Acta 24:1098–1105

    Article  CAS  Google Scholar 

  24. Corcuera S, Skyllas-Kazacos M (2012) State-of-charge monitoring and electrolyte rebalancing methods for the vanadium redox flow battery. Eur Chem Bull 1(12):511–519

    CAS  Google Scholar 

  25. Prifti H, Parasuraman A, Winardi S, Lim TM, Skyllas-Kazacos M (2012) Membranes for redox flow battery applications. Membranes 2:275–306. https://doi.org/10.3390/membranes2020275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xi J, Wu Z, Teng × et al (2008) Self-assembled polyelectrolyte multilayer modified Nafion membrane with suppressed vanadium ion crossover for vanadium redox flow batteries. J Mater Chem 18(11):1232–1238. https://doi.org/10.1039/B718526J

    Article  CAS  Google Scholar 

  27. Shah AA, Watt-Smith MJ, Walsh FC (2008) A dynamic performance model for redox-flow batteries involving soluble species. Electrochim Acta 53(27):8087–8100. https://doi.org/10.1016/j.electacta.2008.05.067

    Article  CAS  Google Scholar 

  28. Xiao SB, Yu LH, Wu LT et al (2016) Broad temperature adaptability of vanadium redox flow battery-Part 1: electrolyte research. Electrochim Acta 187:525–534. https://doi.org/10.1016/j.electacta.2015.11.062

    Article  CAS  Google Scholar 

  29. Kazacos M, Cheng M, Skyllas-Kazacos M (1990) Vanadium redox cell electrolyte optimization studies. J Appl Electrochem 20(3):463–467. https://doi.org/10.1007/BF01076057

    Article  CAS  Google Scholar 

  30. Reed D, Thomsen E, Wang W et al (2015) Performance of Nafion® N115, Nafion® NR-212, and Nafion® NR-211 in a 1 kW class all vanadium mixed acid redox flow battery. J Power Sources 285:425–430. https://doi.org/10.1016/j.jpowsour.2015.03.099

    Article  CAS  Google Scholar 

  31. Choi HS, Oh YH, Ryu CH et al (2014) Characteristics of the all-vanadium redox flow battery using anion exchange membrane. J Taiwan Inst Chem Eng 45(6):2920–2925. https://doi.org/10.1016/j.jtice.2014.08.032

    Article  CAS  Google Scholar 

  32. Dai WJ, Yu LH, Li ZH et al (2014) Sulfonated poly(ether ether ketone)/graphene composite membrane for vanadium redox flow battery. Electrochim Acta 132:200–207. https://doi.org/10.1016/j.electacta.2014.03.156

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge thyssenkrupp Industrial Solutions AG for financial support and the Energy Research Center of Clausthal University of Technology (EFZ) for technical assistance during this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Schafner.

Additional information

The authors have retracted this article because new results have shown that the assumption of a hydraulic convection through the membrane was not correct. It is very likely that the membrane used for the experiments in this article was damaged. As a result, a part of the determined model parameters and the simulation results changed after evaluation of new experimental results. The authors intend to publish a corrected version of their findings. All authors agree to this retraction.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schafner, K., Becker, M. & Turek, T. RETRACTED ARTICLE: Capacity balancing for vanadium redox flow batteries through electrolyte overflow. J Appl Electrochem 48, 639–649 (2018). https://doi.org/10.1007/s10800-018-1187-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-018-1187-1

Keywords

Navigation