Journal of Applied Electrochemistry

, Volume 48, Issue 5, pp 543–557 | Cite as

Influence of process parameters on growth behaviour and properties of coatings obtained by plasma electrolytic oxidation (PEO) on AA 6061

Research Article
  • 43 Downloads
Part of the following topical collections:
  1. Corrosion

Abstract

Plasma electrolytic oxidation coating is obtained on AA6061 alloy using positive uni-polar pulsed DC in a sodium silicate-based electrolyte. The effect of process parameters such as solution concentration, process time, average current density, pulse frequency and positive on-time is investigated systematically and the corresponding voltage–time response is correlated with the coating growth rate. Surface morphology of the coatings is studied using scanning electron microscopy and the elemental distribution on the coating is investigated using energy dispersive X-ray spectroscopy. The concentration of sodium silicate in the solution is found to play a key role in determining the morphology and composition of the coating. X-ray diffraction studies indicate a transition from crystalline to amorphous nature of the coating with increase in silicate content of the electrolyte. Effect of pulse frequency on the voltage–time response and the corresponding coating growth rate is highly dependent on the solution concentration.

Graphical Abstract

Keywords

Plasma electrolytic oxidation (PEO) Aluminium alloys Surface morphology Elemental distribution studies XRD 

Notes

Acknowledgements

The authors wish to express their sincere gratitude to Prof. S. Sampath, Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore for his valuable guidance and technical assistance in conducting this research work.

Supplementary material

10800_2018_1186_MOESM1_ESM.docx (91 kb)
Supplementary material 1 (DOCX 91 KB)

References

  1. 1.
    Yerokhin AL, Nie X, Leyland A, Matthews A, Dowey SJ (1999) Plasma electrolysis for surface engineering. Surf Coat Technol 122:73–93CrossRefGoogle Scholar
  2. 2.
    Walsh FC, Low CTJ, Wood RJK, Stevens KT, Archer J, Poeton AR, Ryder A (2009) Plasma electrolytic oxidation (PEO) for production of anodised coatings on lightweight metal (Al, Mg, Ti) alloys. Trans Inst Met Finish 87:122–135CrossRefGoogle Scholar
  3. 3.
    Gupta P, Tenhundfeld G, Daigle EO, Ryabkov D (2007) Electrolytic plasma technology: science and engineering—an overview. Surf Coat Technol 201:8746–8760CrossRefGoogle Scholar
  4. 4.
    Zhang Y, Fan W, Du HQ, Zhao YW (2017) Plasma electrolytic oxidation coatings for aluminum alloys. Mater Perform 56(9):38–41Google Scholar
  5. 5.
    Rizwan M, Alias R, Zaidi UZ, Mahmoodian R, Hamdi M (2018) Surface modification of valve metals using plasma electrolytic oxidation for antibacterial applications: a review. J Biomed Mater Res A 106(2):590–605CrossRefGoogle Scholar
  6. 6.
    Matykina E, Arrabal R, Mohedano M, Mingo B, Gonzalez J, Pardo A, Merino MC (2017) Recent advances in energy efficient PEO processing of aluminium alloys. Trans Nonferrous Met Soc China 27(7):1439–1454CrossRefGoogle Scholar
  7. 7.
    Tian J, Luo Z, Qi S, Sun X (2002) Structure and antiwear behavior of micro-arc oxidized coatings on aluminum alloy. Surf Coat Technol 154:1–7CrossRefGoogle Scholar
  8. 8.
    Dearnley PA, Gummersbach J, Weiss H, Ogwu AA, Davies TJ (1999) The sliding wear resistance and frictional characteristics of surface modified aluminium alloys under extreme pressure. Wear 225–229:127–134CrossRefGoogle Scholar
  9. 9.
    Voevodin AA, Yerokhin AL, Lyubimov VV, Donley MS, Zabinski JS (1996) Characterization of wear protective Al-Si-0 coatings formed on Al-based alloys by micro-arc discharge treatment. Surf Coat Technol 86–87:516–521CrossRefGoogle Scholar
  10. 10.
    Wasekar NP, Jyothirmayi A, Krishna LR, Sundararajan G (2008) Effect of micro arc oxidation coatings on corrosion resistance of 6061-Al alloy. J Mater Eng Perform 17(5):708–713CrossRefGoogle Scholar
  11. 11.
    Bajat JB, Vasili R, Stojadinovi S, Miškovi-Stankovi V (2013) Corrosion stability of oxide coatings formed by plasma electrolytic oxidation of aluminum: optimization of process time. Corrosion 69:693–702CrossRefGoogle Scholar
  12. 12.
    Liu YJ, Xu JY, Lin W, Gao C, Zhang JC, Chen XH (2013) Effects of different electrolyte systems on the formation of micro-arc oxidation ceramic coatings of 6061 aluminum alloy. Rev Adv Mater Sci 33:126–130Google Scholar
  13. 13.
    Wang K, Koo B-H, Lee C-G, Kim Y-J, Lee S-H, Byon E (2009) Effects of electrolytes variation on formation of oxide layers of 6061 Al alloys by plasma electrolytic oxidation. Trans Nonferrous Met Soc China 19:866–870CrossRefGoogle Scholar
  14. 14.
    Yerokhin AL, Voevodin AA, Lyubimov VV, Zabinski J, Donley M (1998) Plasma electrolytic fabrication of oxide ceramic surface layers for tribotechnical purposes on aluminium alloys. Surf Coat Technol 110:140–146CrossRefGoogle Scholar
  15. 15.
    Gnedenkov SV, Khrisanfova OA, Zavidnaya AG, Sinebrukhov SL, Kovryanov AN, Scorobogatova TM, Gordienko PS (2000) Production of hard and heat-resistant coatings on aluminium using a plasma micro-discharge. Surf Coat Technol 123:24–28CrossRefGoogle Scholar
  16. 16.
    Yerokhin AL, Nie X, Leyland A, Matthews A (2000) Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti6Al4V alloy. Surf Coat Technol 130:195–206CrossRefGoogle Scholar
  17. 17.
    Li H, Song R, Ji Z (2013) Effects of nano-additive TiO2 on performance of micro-arc oxidation coatings formed on 6063 aluminum alloy. Trans Nonferrous Met Soc China 23:406–411CrossRefGoogle Scholar
  18. 18.
    Arrabal R, Matykina E, Viejo F, Skeldon P, Thompson GE, Merino MC (2008) AC plasma electrolytic oxidation of magnesium with zirconia nanoparticles. Appl Surf Sci 254:6937–6942CrossRefGoogle Scholar
  19. 19.
    Stojadinovic S, Vasilic R, Belca I, Petkovic M, Kasalica B, Nedic Z, Zekovic Lj (2010) Characterization of the plasma electrolytic oxidation of aluminium in sodium tungstate. Corros Sci 52:3258–3265CrossRefGoogle Scholar
  20. 20.
    Lukiyanchuk IV, Rudnev VS (2007) Tungsten oxide films on aluminum and titanium. Inorg Mater 43(3):264–267CrossRefGoogle Scholar
  21. 21.
    Rudnev VS, Morozova VP, Lukiyanchuk IV, Adigamova MV, Tkachenko IA, Ustinov AYu, Kharitonskii PV, Frolov AM (2013) Oxide layers with ferro- and ferrimagnetic characteristics formed on aluminum via plasma electrolytic oxidation. Russ J Phys Chem A 87(6):1052–1056CrossRefGoogle Scholar
  22. 22.
    Snizhko LO, Yerokhin AL, Pilkington A, Gurevina NL, Misnyankin DO, Leyland A, Matthews A (2004) Anodic processes in plasma electrolytic oxidation of aluminium in alkaline solutions. Electrochim Acta 49:2085–2095CrossRefGoogle Scholar
  23. 23.
    Guan Y, Yuan X (2006) Correlation between discharging property and coatings microstructure during plasma electrolytic oxidation. Trans Nonferrous Met Soc China 16:1097–1102CrossRefGoogle Scholar
  24. 24.
    Dehnavi V, Luan BL, Liu XY, Shoesmith DW, Rohani S (2015) Correlation between plasma electrolytic oxidation treatment stages and coating microstructure on aluminum under unipolar pulsed DC mode. Surf Coat Technol 269:91–99CrossRefGoogle Scholar
  25. 25.
    Peters M, Leyens C (2009) Aerospace and space materials, materials science and engineering—vol. III. EOLSS PublicationsGoogle Scholar
  26. 26.
    Wernick S, Pinner R, Sheasby PG (1987) The surface treatment and finishing of aluminium and its alloys—vol 1, 5th edn. ASM InternationalGoogle Scholar
  27. 27.
    Venugopal A, Srinath J, Krishna LR, Narayanan PR, Sharma SC, Venkitakrishnan PV (2016) Corrosion and nanomechanical behaviors of plasma electrolytic oxidation coated AA7020-T6 aluminum alloy. Mater Sci Eng A 660:39–46CrossRefGoogle Scholar
  28. 28.
    Zhang Y, Fan W, Du HQ, Zhao YW (2018) Formation of corrosion-resistant MAO-treated aluminum alloy. Mater Perform 57(2):36–39Google Scholar
  29. 29.
    Ma D, Lu C, Fang Z, Yan W, Wei L, Ni Y, Xu Z (2016) Preparation of high absorbance and high emittance coatings on 6061 aluminum alloy with a pre-deposition method by plasma electrolytic oxidation. Appl Surf Sci 389:874–881CrossRefGoogle Scholar
  30. 30.
    Dehnavi V, Surface modification of aluminum alloys by plasma electrolytic oxidation, Thesis from The University of Western Ontario, Canada, September 2014Google Scholar
  31. 31.
    Hussein RO, Nie X, Northwood DO, Yerokhin A, Matthews A (2010) Spectroscopic study of electrolytic plasma and discharging behaviour during the plasma electrolytic oxidation (PEO) process. J Phys D 43:105203  https://doi.org/10.1088/0022-3727/43/10/105203 CrossRefGoogle Scholar
  32. 32.
    Hussein RO, Northwood DO, Nie X (2010) Coating growth behavior during the plasma electrolytic oxidation process. J Vac Sci Technol A 28:766–773CrossRefGoogle Scholar
  33. 33.
    Krishna LR, Purnima AS, Sundararajan G (2006) A comparative study of tribological behavior of microarc oxidation and hard-anodized coatings. Wear 261:1095–1101CrossRefGoogle Scholar
  34. 34.
    Sundararajan G, Krishna LR (2003) Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology. Surf Coat Technol 167:269–277CrossRefGoogle Scholar
  35. 35.
    Jayaraj RK, Malarvizhi S, Balasubramanian V (2017) Optimizing the micro-arc oxidation (MAO) parameters to attain coatings with minimum porosity and maximum hardness on the friction stir welded AA6061 aluminium alloy welds. Def Technol 13(2):111–117CrossRefGoogle Scholar
  36. 36.
    Sobolev A, Kossenko A, Zinigrad M, Borodianskiy K (2017) An investigation of oxide coating synthesized on an aluminum alloy by plasma electrolytic oxidation in molten salt. Appl Sci 7(9):889.  https://doi.org/10.3390/app7090889 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Thermal Systems GroupISRO Satellite CentreBangaloreIndia

Personalised recommendations