Journal of Applied Electrochemistry

, Volume 48, Issue 5, pp 519–528 | Cite as

Effectiveness of electro-oxidation and electro-Fenton processes in removal of organic matter from high-strength brewery wastewater

  • Sharmin Sultana
  • Mahbuboor Rahman Choudhury
  • Ahmed Refaat Bakr
  • Nawrin Anwar
  • Md. Saifur Rahaman
Research Article


In this study, electrochemical processes, namely electro-oxidation (EO) and electro-Fenton (EF), using a boron-doped diamond (BDD) anode were introduced for high-strength brewery wastewater treatment. The emphasis of the work was focused on analyzing (i) performance of EO and integrated EO–EF processes in mineralizing organics from brewery wastewater, (ii) in-situ generation of H2O2 and ·OH radical, and (iii) contribution of the Fenton reaction in oxidizing organic content. The integrated EO–EF process, which involved external iron addition, showed a non-significant effect on treatment in comparison to the EO process. EO treatment alone (i.e., without any external iron dosing) demonstrated high removal of organic matter (∼ 91%). Pre-existing iron in brewery wastewater likely enhanced the EO treatment by incorporating in-situ electro-Fenton. The generation of H2O2 and ·OH exhibited variation due to the addition of iron from external sources. The predominant iron species found in the integrated EO–EF process was Fe(III), which can be attributed as an outcome of the Fenton reaction and the passivation of the electrode surface by iron complexes.

Graphical Abstract


Boron-doped diamond Electrochemical methods Brewery wastewater Reactive oxygen species Hydroxyl radical 



The authors gratefully acknowledge the Ministre de l’Agriculture, des Pêcheries et de l’Alimentation, Québec (MAPAQ) and the Natural Sciences and Engineering Research Council (NSERC) of Canada for providing funding supports for this project. We thank Claude Danis and Julien Beaulieu Sabourin (Labatt Brasserie, LaSalle, Quebec) for collecting and shipping the brewery wastewater for this project.

Supplementary material

10800_2018_1185_MOESM1_ESM.docx (138 kb)
Supplementary material 1 (DOCX 138 KB)


  1. 1.
    Doubla A, Laminsi S, Nzali S, Njoyim E, Kamsu-Kom J, Brisset JL (2007) Organic pollutants abatement and biodecontamination of brewery effluents by a non-thermal quenched plasma at atmospheric pressure. Chemosphere 69(2):332–337. CrossRefGoogle Scholar
  2. 2.
    Valta K, Kosanovic T, Malamis D, Moustakas K, Loizidou M (2014) Overview of water usage and wastewater management in the food and beverage industry. Desalin Water Treat 53(12):3335–3347. CrossRefGoogle Scholar
  3. 3.
    Simate GS, Cluett J, Iyuke SE, Musapatika ET, Ndlovu S, Walubita LF, Alvarez AE (2011) The treatment of brewery wastewater for reuse: state of the art. Desalination 273(2–3):235–247. CrossRefGoogle Scholar
  4. 4.
    Parawira W, Kudita I, Nyandoroh MG, Zvauya R (2005) A study of industrial anaerobic treatment of opaque beer brewery wastewater in a tropical climate using a full-scale UASB reactor seeded with activated sludge. Process Biochem 40(2):593–599. CrossRefGoogle Scholar
  5. 5.
    Simate GS, Iyuke SE, Ndlovu S, Heydenrych M (2012) The heterogeneous coagulation and flocculation of brewery wastewater using carbon nanotubes. Water Res 46(4):1185–1197. CrossRefGoogle Scholar
  6. 6.
    Wang SG, Liu XW, Gong WX, Gao BY, Zhang DH, Yu HQ (2007) Aerobic granulation with brewery wastewater in a sequencing batch reactor. Bioresour Technol 98(11):2142–2147. CrossRefGoogle Scholar
  7. 7.
    Feng Y, Wang X, Logan BE, Lee H (2008) Brewery wastewater treatment using air-cathode microbial fuel cells. Appl Microbiol Biotechnol 78(5):873–880. CrossRefGoogle Scholar
  8. 8.
    Singh KS, Viraraghavan T (2003) Impact of temperature on performance, microbiological, and hydrodynamic aspects of UASB reactors treating municipal wastewater. Water Sci Technol 48(6):211–217Google Scholar
  9. 9.
    Chen H, Chang S, Guo Q, Hong Y, Wu P (2016) Brewery wastewater treatment using an anaerobic membrane bioreactor. Biochem Eng J 105:321–331. CrossRefGoogle Scholar
  10. 10.
    Liao B-Q, Kraemer JT, Bagley DM (2006) Anaerobic membrane bioreactors: applications and research directions. Crit Rev Environ Sci Technol 36(6):489–530. CrossRefGoogle Scholar
  11. 11.
    Krishnan Vijayaraghavan DA, Renny L (2006) Electrolytic treatment of beer brewery wastewater. Ind Eng Chem Res 45:6854–6859CrossRefGoogle Scholar
  12. 12.
    Santana-Martínez G, Roa-Morales G, Martin del Campo E, Romero R, Frontana-Uribe BA, Natividad R (2016) Electro-Fenton and electro-Fenton-like with in situ electrogeneration of H2O2 and catalyst applied to 4-chlorophenol mineralization. Electrochim Acta 195:246–256. CrossRefGoogle Scholar
  13. 13.
    Jardak K, Dirany A, Drogui P, El Khakani MA (2017) Statistical optimization of electrochemical oxidation of ethylene glycol using response surface methodology. Process Saf Environ Prot 105:12–20. CrossRefGoogle Scholar
  14. 14.
    Bakr AR, Rahaman MS (2016) Electrochemical efficacy of a carboxylated multiwalled carbon nanotube filter for the removal of ibuprofen from aqueous solutions under acidic conditions. Chemosphere 153:508–520. CrossRefGoogle Scholar
  15. 15.
    Omi FR, Choudhury MR, Anwar N, Bakr AR, Rahaman MS (2017) Highly conductive ultrafiltration membrane via vacuum filtration assisted layer-by-layer deposition of functionalized carbon nanotubes. Ind Eng Chem Res 56(30):8474–8484. CrossRefGoogle Scholar
  16. 16.
    Zhang Y, Gao M, Wang S-G, Zhou W, Sang Y, Wang X-H (2017) Integrated electro-Fenton process enabled by a rotating Fe3O4/gas diffusion cathode for simultaneous generation and activation of H2O2. Electrochim Acta 231:694–704. CrossRefGoogle Scholar
  17. 17.
    Barrera-Díaz C, Cañizares P, Fernández FJ, Natividad R, Rodrigo MA (2014) Electrochemical advanced oxidation processes: an overview of the current applications to actual industrial effluents. J Mex Chem Soc 58(3):256–275Google Scholar
  18. 18.
    El-Ghenymy A, Rodriguez RM, Brillas E, Oturan N, Oturan MA (2014) Electro-Fenton degradation of the antibiotic sulfanilamide with Pt/carbon-felt and BDD/carbon-felt cells. Kinetics, reaction intermediates, and toxicity assessment. Environ Sci Pollut Res 21(14):8368–8378. CrossRefGoogle Scholar
  19. 19.
    Jiang C-c, Zhang J-f (2007) Progress and prospect in electro-Fenton process for wastewater treatment. J Zhejiang Univ Sci A 8(7):1118–1125. CrossRefGoogle Scholar
  20. 20.
    Ganzenko O, Oturan N, Huguenot D, van Hullebusch ED, Esposito G, Oturan MA (2015) Removal of psychoactive pharmaceutical caffeine from water by electro-Fenton process using BDD anode: effects of operating parameters on removal efficiency. Sep Purif Technol 156:987–995. CrossRefGoogle Scholar
  21. 21.
    Bensalah N, Bedoui A, Chellam S, Abdel-Wahab A (2013) Electro-Fenton treatment of photographic processing wastewater. Clean Soil Air Water 41(7):635–644. CrossRefGoogle Scholar
  22. 22.
    Guinea E, Arias C, Cabot PL, Garrido JA, Rodriguez RM, Centellas F, Brillas E (2008) Mineralization of salicylic acid in acidic aqueous medium by electrochemical advanced oxidation processes using platinum and boron-doped diamond as anode and cathodically generated hydrogen peroxide. Water Res 42(1–2):499–511. CrossRefGoogle Scholar
  23. 23.
    Liu Y, Xie J, Ong CN, Vecitis CD, Zhou Z (2015) Electrochemical wastewater treatment with carbon nanotube filters coupled with in situ generated H2O2. Environ Sci Water Res Technol 1(6):769–778. CrossRefGoogle Scholar
  24. 24.
    Abdessamad N, Akrout H, Hamdaoui G, Elghniji K, Ksibi M, Bousselmi L (2013) Evaluation of the efficiency of monopolar and bipolar BDD electrodes for electrochemical oxidation of anthraquinone textile synthetic effluent for reuse. Chemosphere 93(7):1309–1316. CrossRefGoogle Scholar
  25. 25.
    Wang CT, Hu JL, Chou WL, Kuo YM (2008) Removal of color from real dyeing wastewater by electro-Fenton technology using a three-dimensional graphite cathode. J Hazard Mater 152(2):601–606. CrossRefGoogle Scholar
  26. 26.
    HACH (2012) Water analysis handbook, 7th edn. HACH Company, LovelandGoogle Scholar
  27. 27.
    Lacan F, Radic A, Jeandel C, Poitrasson F, Sarthou G, Pradoux C, Freydier R (2008) Measurement of the isotopic composition of dissolved iron in the open ocean. Geophys Res Lett. Google Scholar
  28. 28.
    Spolaor A, Vallelonga P, Gabrieli J, Cozzi G, Boutron C, Barbante C (2012) Determination of Fe2+ and Fe3+ species by FIA-CRC-ICP-MS in Antarctic ice samples. J Anal At Spectrom 27(2):310–317. CrossRefGoogle Scholar
  29. 29.
    Bader H, Sturzenegger V, Hoigne J (1988) Photometric method for the determination of low concentrations of hydrogen peroxide by the peroxidase catalyzed oxidation of N,N-diethyl-p-phenylenediamine (DPD). Water Res 22(9):1109–1115CrossRefGoogle Scholar
  30. 30.
    Hsieh H-S, Jafvert CT (2015) Reactive oxygen species generation and dispersant-dependent electron transfer through single-walled carbon nanotubes in water. Carbon 89:361–371. CrossRefGoogle Scholar
  31. 31.
    Fan Z, Kwon Y-H, Yang X, Xu W, Wu Z (2017) In-situ production of hydrogen peroxide as oxidant for direct urea fuel cell. Energy Procedia 105:1858–1863. CrossRefGoogle Scholar
  32. 32.
    Peralta E, Roa G, Hernandez-Servin JA, Romero R, Balderas P, Natividad R (2014) Hydroxyl radicals quantification by UV spectrophotometry. Electrochim Acta 129:137–141. CrossRefGoogle Scholar
  33. 33.
    Bard AJ, Faulkner LR (2001) Electrochemical methods fundamentals and applications, 2 edn. Wiley, New YorkGoogle Scholar
  34. 34.
    Terrazas E, Vazquez A, Briones R, Lazaro I, Rodriguez I (2010) EC treatment for reuse of tissue paper wastewater: aspects that affect energy consumption. J Hazard Mater 181(1–3):809–816. CrossRefGoogle Scholar
  35. 35.
    Li H, Yu Q, Yang B, Li Z, Lei L (2014) Electrochemical treatment of artificial humidity condensate by large-scale boron doped diamond electrode. Sep Purif Technol 138:13–20. CrossRefGoogle Scholar
  36. 36.
    Lan Y, Coetsier C, Causserand C, Groenen Serrano K (2017) On the role of salts for the treatment of wastewaters containing pharmaceuticals by electrochemical oxidation using a boron doped diamond anode. Electrochim Acta 231:309–318. CrossRefGoogle Scholar
  37. 37.
    Jasper JT, Yang Y, Hoffmann MR (2017) Toxic byproduct formation during electrochemical treatment of latrine wastewater. Environ Sci Technol 51(12):7111–7119. CrossRefGoogle Scholar
  38. 38.
    Trellu C, Péchaud Y, Oturan N, Mousset E, Huguenot D, van Hullebusch ED, Esposito G, Oturan MA (2016) Comparative study on the removal of humic acids from drinking water by anodic oxidation and electro-Fenton processes: mineralization efficiency and modelling. Appl Catal B 194:32–41. CrossRefGoogle Scholar
  39. 39.
    Sancho D, Blanco CA, Caballero I, Pascual A (2011) Free iron in pale, dark and alcohol-free commercial lager beers. J Sci Food Agric 91(6):1142–1147. CrossRefGoogle Scholar
  40. 40.
    Eyvaz M (2016) Treatment of brewery wastewater with electrocoagulation: improving the process performance by using alternating pulse current. Int J Electrochem Sci. Google Scholar
  41. 41.
    Qiu S, He D, Ma J, Liu T, Waite TD (2015) Kinetic modeling of the electro-Fenton process: quantification of reactive oxygen species generation. Electrochim Acta 176:51–58. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Sharmin Sultana
    • 1
  • Mahbuboor Rahman Choudhury
    • 1
  • Ahmed Refaat Bakr
    • 1
  • Nawrin Anwar
    • 1
  • Md. Saifur Rahaman
    • 1
  1. 1.Department of Building, Civil and Environmental EngineeringConcordia UniversityMontrealCanada

Personalised recommendations