Advertisement

Journal of Applied Electrochemistry

, Volume 48, Issue 6, pp 589–596 | Cite as

Electrochemical oxidation of 6:2 fluorotelomer sulfonic acid (6:2 FTSA) on BDD: electrode characterization and mechanistic investigation

  • Jordi Carrillo-Abad
  • Valentín Pérez-Herranz
  • Ane Urtiaga
Research Article
  • 184 Downloads

Abstract

6:2 Fluorotelomer sulfonic acid (6:2 FTSA) is used as surfactant and foam stabilizer in the formulation of air firefighting foams (AFFFs). 6:2 FTSA is produced as an alternative to persistent and bioaccumulative long-chain perfluoroalkyl compounds. This study investigates the electrochemical degradation of 6:2 FTSA on a boron-doped diamond (BDD) anode. First, the BDD anode was characterized by cyclic voltammetry, revealing that the direct oxidation of 6:2 FTSA occurred at an anodic potential of 2.72 V versus Ag/AgCl (saturated KCl) electrode. Increasing the scan rate resulted in an increased current intensity of the direct oxidation peak, and this relationship was analyzed using the Randles–Sevcik equation to calculate the diffusion coefficient of 6:2 FTSA in aqueous media (D = 4.16 × 10−6 cm2 s−1 at room temperature). This value is in close agreement to the predicted value obtained by the Wilke–Chang correlation. In electrolysis experiments under potentiostatic control, increasing the anode potential over 2.72 V greatly enhanced the 6:2 FTSA removal, and the simultaneous formation of short-chain perfluorocarboxylic acids (perfluorohexanoic acid, perfluorpentanoic acid and perfluorobutanoic acid) and fluoride release were observed. Based on these observations, the 6:2 FTSA degradation pathway was predicted to start by the attack of hydroxyl radicals to the non-fluorinated carbons to form a perfluorocarboxylate, followed by a single electron transfer to the anode to yield a reactive radical C6F13COO‧. The latter species decarboxylated and finally combined with hydroxyl radicals to allow defluorination to form shorter-chain perfluorocarboxylic acids.

Graphical Abstract

Keywords

6:2 FTSA Boron-doped diamond (BDD) anode Electrolysis Poly and perfluoroalkyl substances (PFASs) 

Notes

Acknowledgements

Support from the Spanish Excellence Network E3TECH (CTQ2015-71650-RDT) and Projects CTM2013-44081-R and CTM2016-75509-R CTM2016-75509-R (MINECO, SPAIN-FEDER 2014–2020) is acknowledged. J. Carrillo-Abad thanks the Generalitat Valenciana for granting a post-doctoral fellowship (APOSTD/2015/019).

References

  1. 1.
    Dauchy X, Boiteux V, Rosin C, Munoz JF (2012) Relationship between industrial discharges and contamination of raw water resources by perfluorinated compounds. Part I: case study of a fluoropolymer manufacturing plant. Bull Environ Contam Toxicol 89:525–530.  https://doi.org/10.1007/s00128-012-0704-x CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Prevedouros K, Cousins IT, Buck RC, Korzeniowski SH (2006) Sources, fate and transport of perfluorocarboxylates. Environ Sci Technol 40:32–44.  https://doi.org/10.1021/es0512475 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Fuertes I, Gomez-Lavin S, Elizalde M, Urtiaga A (2017) Perfluorinated alkyl substances (PFASs) in northern Spain municipal solid waste landfill leachates. Chemosphere 168:399–407.  https://doi.org/10.1016/j.chemosphere.2016.10.072 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    ECHA (2014) Candidate list substances of very high concern for authorisation. https://echa.europa.eu/candidate-list-table. Accessed 31 Oct 2017
  5. 5.
    United Nations Environment Programme (UNEP) (2009) Governments unite to step-up reduction on global DDT reliance and add nine new chemicals under international treaty. United Nations Environment Programme, Geneva, Switzerland [cited 2015 July 10]. http://chm.pops.int/Convention/Pressrelease/COP4Geneva8May2009/tabid/542/language/en-US/Default.aspx
  6. 6.
    OJ L226 (2013) Directive 2013/39/EU of the European parliament and of the council of 12 August 2013 amending directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Off J Eur Union L226, 1e17Google Scholar
  7. 7.
    United States Environmental Protection Agency (2016) Drinking water health advisory levels for PFOA and PFOS. https://www.epa.gov/ground-water-and-drinking-water/drinking-water-health-advisories-pfoa-and-pfos. Accessed 31 Oct 2017
  8. 8.
    Brunn-Poulsen PB, Astrup-Jensen AA, Wallström E (2005) More environmentally friendly alternatives to PFOS-compounds and PFOA. Danish Environmental Protection Agency, Environmental Project No., p 1013Google Scholar
  9. 9.
    Wang N, Liu J, Buck RC et al (2011) 6:2 Fluorotelomer sulfonate aerobic biotransformation in activated sludge of waste water treatment plants. Chemosphere 82:853–858.  https://doi.org/10.1016/j.chemosphere.2010.11.003 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhang S, Lu X, Wang N, Buck RC (2016) Biotransformation potential of 6:2 fluorotelomer sulfonate (6:2 FTSA) in aerobic and anaerobic sediment. Chemosphere 154:224–230.  https://doi.org/10.1016/j.chemosphere.2016.03.062 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Appleman TD, Higgins CP, Quiñones O et al (2014) Treatment of poly- and perfluoroalkyl substances in U.S. full-scale water treatment systems. Water Res 51:246–255.  https://doi.org/10.1016/j.watres.2013.10.067 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Yang X, Huang J, Zhang K et al (2014) Stability of 6:2 fluorotelomer sulfonate in advanced oxidation processes: degradation kinetics and pathway. Environ Sci Pollut Res 21:4634–4642.  https://doi.org/10.1007/s11356-013-2389-z CrossRefGoogle Scholar
  13. 13.
    Park S, Lee LS, Medina VF et al (2016) Heat-activated persulfate oxidation of PFOA, 6:2 fluorotelomer sulfonate, and PFOS under conditions suitable for in-situ groundwater remediation. Chemosphere 145:376–383.  https://doi.org/10.1016/j.chemosphere.2015.11.097 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Liu CS, Higgins CP, Wang F, Shih K (2012) Effect of temperature on oxidative transformation of perfluorooctanoic acid (PFOA) by persulfate activation in water. Sep Purif Technol 91:46–51.  https://doi.org/10.1016/j.seppur.2011.09.047 CrossRefGoogle Scholar
  15. 15.
    Urtiaga A, Fernandez-Gonzalez C, Gomez-Lavin S, Ortiz I (2015) Kinetics of the electrochemical mineralization of perfluorooctanoic acid on ultrananocrystalline boron doped conductive diamond electrodes. Chemosphere 129:20–26.  https://doi.org/10.1016/j.chemosphere.2014.05.090 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Soriano A, Gorri D, Urtiaga A (2017) Efficient treatment of perfluorohexanoic acid by nanofiltration followed by electrochemical degradation of the NF concentrate. Water Res 112:147–156.  https://doi.org/10.1016/j.watres.2017.01.043 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Gomez-Ruiz B, Gómez-Lavín S, Diban N, Boiteux V, Colin A, Dauchy X, Urtiaga A (2017) Efficient electrochemical degradation of poly- and perfluoroalkyl substances (PFASs) from the effluents of an industrial wastewater treatment plant. Chem Eng J 322:196–204.  https://doi.org/10.1016/j.cej.2017.04.040 CrossRefGoogle Scholar
  18. 18.
    Gomez-Ruiz B, Gómez-Lavín S, Diban N, Boiteux V, Colin A, Dauchy X, Urtiaga A (2017) Boron doped diamond electrooxidation of 6:2 fluorotelomers and perfluorocarboxylic acids: application to industrial wastewaters treatment. J Electroanal Chem 798:51–57.  https://doi.org/10.1016/j.jelechem.2017.05.033 CrossRefGoogle Scholar
  19. 19.
    Schaefer CE, Andaya C, Burant A, Condee CW, Urtiaga A, Strathmann TJ, Higgins CP (2017) Electrochemical treatment of perfluorooctanoic acid and perfluorooctane sulfonate: insights into mechanisms and application to groundwater treatment. Chem Eng J 317:424–432.  https://doi.org/10.1016/j.cej.2017.02.107 CrossRefGoogle Scholar
  20. 20.
    Coledam DAC, Aquino JM, Silva BF et al (2016) Electrochemical mineralization of norfloxacin using distinct boron-doped diamond anodes in a filter-press reactor, with investigations of toxicity and oxidation by-products. Electrochim Acta 213:856–864.  https://doi.org/10.1016/j.electacta.2016.08.003 CrossRefGoogle Scholar
  21. 21.
    Serrano K, Michaud PA, Comninellis C, Savall A (2002) Electrochemical preparation of peroxodisulfuric acid using boron doped diamond thin film electrodes. Electrochim Acta 48:431–436.  https://doi.org/10.1016/S0013-4686(02)00688-6 CrossRefGoogle Scholar
  22. 22.
    Provent C, Haenni W, Santoli E, Rychen P (2004) Boron-doped diamond electrodes and microelectrode-arrays for the measurement of sulfate and peroxodisulfate. Electrochim Acta 49:3737–3744.  https://doi.org/10.1016/j.electacta.2004.02.047 CrossRefGoogle Scholar
  23. 23.
    Davis J, Baygents JC, Farrell J (2014) Understanding persulfate production at boron doped diamond film anodes. Electrochim Acta 150:68–74.  https://doi.org/10.1016/j.electacta.2014.10.104 CrossRefGoogle Scholar
  24. 24.
    Chaplin BP, Wyle I, Zeng H et al (2011) Characterization of the performance and failure mechanisms of boron-doped ultrananocrystalline diamond electrodes. J Appl Electrochem 41:1329–1340.  https://doi.org/10.1007/s10800-011-0351-7 CrossRefGoogle Scholar
  25. 25.
    Polcaro AM, Mascia M, Palmas S, Vacca A (2010) Case studies in the electrochemical treatment of wastewater containing organic pollutants using BDD. In: Comninellis C, Chen G (eds) Electrochemistry for the environment. Springer, New York, pp 205–227CrossRefGoogle Scholar
  26. 26.
    Panizza M, Kapalka A, Comninellis C (2008) Oxidation of organic pollutants on BDD anodes using modulated current electrolysis. Electrochim 53:2289–2295.  https://doi.org/10.1016/j.electacta.2007.09.044 CrossRefGoogle Scholar
  27. 27.
    Cañizares P, Lobato J, Paz R, Rodrigo MA, Sáez C (2005) Electrochemical oxidation of phenolic wastes with boron-doped diamond anodes. Water Res 39:2687–2703.  https://doi.org/10.1016/j.watres.2005.04.042 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Zhuo Q, Deng S, Yang B et al (2012) Degradation of perfluorinated compounds on a boron-doped diamond electrode. Electrochim Acta 77:17–22.  https://doi.org/10.1016/j.electacta.2012.04.145 CrossRefGoogle Scholar
  29. 29.
    Chaplin BP, Hubler DK, Farrell J (2013) Understanding anodic wear at boron doped diamond film electrodes. Electrochim Acta 89:122–131.  https://doi.org/10.1016/j.electacta.2012.10.166 CrossRefGoogle Scholar
  30. 30.
    Polcaro AM, Ricci PC, Palmas S et al (2006) Characterization of boron doped diamond electrodes during oxidation processes: relationship between electrochemical activity and ageing time. Thin Solid Films 515:2073–2078.  https://doi.org/10.1016/j.tsf.2006.06.033 CrossRefGoogle Scholar
  31. 31.
    Tryk DA, Tsunozaki K, Rao TN, Fujishima A (2001) Relationships between surface character and electrochemical processes on diamond electrodes: dual roles of surface termination and near-surface hydrogen. Diam Relat Mater 10:1804–1809.  https://doi.org/10.1016/S0925-9635(01)00453-8 CrossRefGoogle Scholar
  32. 32.
    Trejo G, Ortega R, Meas Y et al (1998) Nucleation and growth of zinc from chloride concentrated solutions. J Electrochem Soc 145:4090–4097CrossRefGoogle Scholar
  33. 33.
    García-Gabaldón M, Carrillo-Abad J, Ortega-Navarro E, Pérez-Herranz V (2011) Electrochemical study of a simulated spent pickling solution. Int J Electrochem Sci 6:506–519Google Scholar
  34. 34.
    Bard AJ, Faulkner LR (1980) Electrochemical methods. Fundamentals and applications, 2nd edn. Wiley, New YorkGoogle Scholar
  35. 35.
    Craig JB. Galus (1994) Fundamentals of electrochemical analysis–second edition: Z. Ellis Horwood, ChichesterGoogle Scholar
  36. 36.
    Don W. Green; Robert H, Perry (2008) Perry’s chemical engineers’ handbook, 8th edn. McGraw-Hill Professional, New YorkGoogle Scholar
  37. 37.
    Enache TA, Chiorcea-Paquim AM, Fatibello-Filho O, Oliveira-Brett AM (2009) Hydroxyl radicals electrochemically generated in situ on a boron-doped diamond electrode. Electrochem commun 11:1342–1345.  https://doi.org/10.1016/j.elecom.2009.04.017 CrossRefGoogle Scholar
  38. 38.
    Zhuo Q, Li X, Yan F et al (2014) Electrochemical oxidation of 1H,1H,2H,2H-perfluorooctane sulfonic acid (6:2 FTS) on DSA electrode: operating parameters and mechanism. J Environ Sci (China) 26:1733–1739.  https://doi.org/10.1016/j.jes.2014.06.014 CrossRefGoogle Scholar
  39. 39.
    Tang H, Xiang Q, Lei M et al (2012) Efficient degradation of perfluorooctanoic acid by UV-Fenton process. Chem Eng J 184:156–162.  https://doi.org/10.1016/j.cej.2012.01.020 CrossRefGoogle Scholar
  40. 40.
    Arias España VA, Mallavarapu M, Naidu R (2015) Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA): a critical review with an emphasis on field testing. Environ Technol Innov 4:168–181.  https://doi.org/10.1016/j.eti.2015.06.001 CrossRefGoogle Scholar
  41. 41.
    Giri RR, Ozaki H, Okada T et al (2012) Factors influencing UV photodecomposition of perfluorooctanoic acid in water. Chem Eng J 180:197–203.  https://doi.org/10.1016/j.cej.2011.11.049 CrossRefGoogle Scholar
  42. 42.
    Lee YC, Lo SL, Kuo J, Lin YL (2012) Persulfate oxidation of perfluorooctanoic acid under the temperatures of 20–40 °C. Chem Eng J 198–199:27–32.  https://doi.org/10.1016/j.cej.2012.05.073 CrossRefGoogle Scholar
  43. 43.
    Liu CS, Shih K, Wang F (2012) Oxidative decomposition of perfluorooctanesulfonate in water by permanganate. Sep Purif Technol 87:95–100.  https://doi.org/10.1016/j.seppur.2011.11.027 CrossRefGoogle Scholar
  44. 44.
    Brillas E, Sires I, Oturan MA et al (2009) Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev 109:6570–6631.  https://doi.org/10.1021/cr900136g CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    El-Ghenymy A, Oturan N, Oturan MA et al (2013) Comparative electro-Fenton and UVA photoelectro-Fenton degradation of the antibiotic sulfanilamide using a stirred BDD/air-diffusion tank reactor. Chem Eng J 234:115–123.  https://doi.org/10.1016/j.cej.2013.08.080 CrossRefGoogle Scholar
  46. 46.
    Guinea E, Garrido JA, Rodríguez RM et al (2010) Degradation of the fluoroquinolone enrofloxacin by electrochemical advanced oxidation processes based on hydrogen peroxide electrogeneration. Electrochim Acta 55:2101–2115.  https://doi.org/10.1016/j.electacta.2009.11.040 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Jordi Carrillo-Abad
    • 1
    • 2
  • Valentín Pérez-Herranz
    • 2
  • Ane Urtiaga
    • 1
  1. 1.Department of Chemical and Biomolecular EngineeringUniversity of CantabriaSantanderSpain
  2. 2.Departamento de Ingeniería Química y NuclearUniversidad Politècnica de ValènciaValenciaSpain

Personalised recommendations