Journal of Applied Electrochemistry

, Volume 48, Issue 4, pp 451–462 | Cite as

Impact of the charging conditions on the discharge performance of rechargeable iron-anodes for alkaline iron–air batteries

  • Henning Weinrich
  • Markus Gehring
  • Hermann Tempel
  • Hans Kungl
  • Rüdiger-A. Eichel
Research Article


Pressed-plate carbonyl iron electrodes for rechargeable iron–air batteries have recently been described to undergo a considerable electrochemical formation before they attain a stable and competitive discharge capacity in concentrated alkaline electrolyte. In this study, the impact of the charging conditions on the discharge performance due to electrochemical formation was investigated. Based on the results, it is demonstrated that the preset charge capacity mainly determines the resulting discharge capacities of the porous electrodes in the steady state at the end of the formation period. Furthermore, the present study elucidates the electrode processes behind formation and expands the existing phenomenological model that has recently been established to explain the evolution of the discharge capacity. Finally, feasible criteria for the comparison of different anode architectures are discussed.

Graphical Abstract


Rechargeable iron–air batteries Carbonyl iron electrodes Sulfide additives Formation Increasing surface area 



The authors kindly acknowledge the financial support from the German Federal Ministry of Education and Research (BMBF) within the project “High Temperature and Energy Materials - Resource-Efficient Metal-Air Batteries with High Energy Density” Project No. 03EK3032 and the project SABLE “Skalenübergreifende, multi-modale 3D-Bildgebung Elektrochemischer Hochleistingskomponenten” Project No. 03EK3543. Moreover, the authors appreciate the support by C. Hellenbrandt and the SEM supervision by R. Schierholz at the Institute of Energy and Climate Research – Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich.


  1. 1.
    Armand M, Tarascon J-M (2008) Building better batteries. Nature 451:652–657. CrossRefGoogle Scholar
  2. 2.
    Goodenough JB, Kim Y (2011) Challenges for rechargeable batteries. J Power Sources 196:6688–6694. CrossRefGoogle Scholar
  3. 3.
    Noorden R Van (2014) The rechargeable revolution: a better battery. Nature 507:26–28. CrossRefGoogle Scholar
  4. 4.
    Hannan MA, Hoque MM, Mohamed A, Ayob A (2017) Review of energy storage systems for electric vehicle applications: issues and challenges. Renew Sustain Energy Rev 69:771–789. CrossRefGoogle Scholar
  5. 5.
    Lee JS, Kim ST, Cao R et al (2011) Metal-air batteries with high energy density: Li-air versus Zn-air. Adv Energy Mater 1:34–50. CrossRefGoogle Scholar
  6. 6.
    Cheng F, Chen J (2012) Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev 41:2172. CrossRefGoogle Scholar
  7. 7.
    Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2011) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11:172–172. CrossRefGoogle Scholar
  8. 8.
    Christensen J, Albertus P, Sanchez-Carrera RS et al (2012) A critical review of Li/air batteries. J Electrochem Soc 159:R1. CrossRefGoogle Scholar
  9. 9.
    Wandt J, Jakes P, Granwehr J et al (2016) Singlet oxygen formation during the charging process of an aprotic lithium-oxygen battery. Angew Chem Int Ed. Google Scholar
  10. 10.
    Imanishi N, Yamamoto O (2014) Rechargeable lithium-air batteries: characteristics and prospects. Mater Today 17:24–30. CrossRefGoogle Scholar
  11. 11.
    Durmus YE, Aslanbas Ö, Kayser S et al (2017) Long run discharge, performance and efficiency of primary silicon–air cells with alkaline electrolyte. Electrochim Acta 225:215–224. CrossRefGoogle Scholar
  12. 12.
    Elia GA, Marquardt K, Hoeppner K et al (2016) An overview and future perspectives of aluminum batteries. Adv Mater 28:7564–7579. CrossRefGoogle Scholar
  13. 13.
    Gelman D, Shvartsev B, Ein-Eli Y (2014) Aluminum–air battery based on an ionic liquid electrolyte. J Mater Chem A 2:20237–20242. CrossRefGoogle Scholar
  14. 14.
    Li Y, Dai H (2014) Recent advances in zinc–air batteries. Chem Soc Rev 43:5257–5275. CrossRefGoogle Scholar
  15. 15.
    Narayanan SR, Surya Prakash GK, Manohar AK et al (2012) Materials challenges and technical approaches for realizing inexpensive and robust iron-air batteries for large-scale energy storage. Solid State Ion. 216:105–109. CrossRefGoogle Scholar
  16. 16.
    McKerracher RD, Ponce de Leόn C, Wills RGA et al (2015) A review of the iron-air secondary battery for energy storage. ChemPlusChem 80:323–335. CrossRefGoogle Scholar
  17. 17.
    Hang BT, Hayashi H, Yoon SH et al (2008) Fe2O3-filled carbon nanotubes as a negative electrode for an Fe-air battery. J Power Sources 178:393–401. CrossRefGoogle Scholar
  18. 18.
    Manohar AK, Malkhandi S, Yang B et al (2012) A high-performance rechargeable iron electrode for large-scale battery-based energy storage. J Electrochem Soc 159:A1209–A1214. CrossRefGoogle Scholar
  19. 19.
    Weinrich H, Come J, Tempel H et al (2017) Understanding the nanoscale redox-behavior of iron-anodes for rechargeable iron-air batteries. Nano Energy 41:706–716. CrossRefGoogle Scholar
  20. 20.
    Manohar AK, Yang C, Malkhandi S et al (2012) Understanding the factors affecting the formation of carbonyl iron electrodes in rechargeable alkaline iron batteries. J Electrochem Soc 159:A2148–A2155. CrossRefGoogle Scholar
  21. 21.
    Posada JOG, Hall PJ (2014) Multivariate investigation of parameters in the development and improvement of NiFe cells. J Power Sources 262:263–269. CrossRefGoogle Scholar
  22. 22.
    Posada JOG, Hall PJ (2014) Post-hoc comparisons among iron electrode formulations based on bismuth, bismuth sulphide, iron sulphide, and potassium sulphide under strong alkaline conditions. J Power Sources 268:810–815. CrossRefGoogle Scholar
  23. 23.
    Sundar Rajan A, Ravikumar MK, Priolkar KR et al (2014) Carbonyl-iron electrodes for rechargeable-iron batteries. Electrochem Energy Technol 1:2–9. Google Scholar
  24. 24.
    Manohar AK, Yang C, Narayanan SR (2015) The role of sulfide additives in achieving long cycle life rechargeable iron electrodes in alkaline batteries. J Electrochem Soc 162:A1864–A1872. CrossRefGoogle Scholar
  25. 25.
    Shangguan E, Li F, Li J et al (2015) FeS/C composite as high-performance anode material for alkaline nickel-iron rechargeable batteries. J Power Sources 291:29–39. CrossRefGoogle Scholar
  26. 26.
    Posada JOG, Hall PJ (2016) Controlling hydrogen evolution on iron electrodes. Int J Hydrog Energy 41:20807–20817. CrossRefGoogle Scholar
  27. 27.
    Yang C, Manohar AK, Narayanan SR (2017) A high-performance sintered iron electrode for rechargeable alkaline batteries to enable large-scale energy storage. J Electrochem Soc 164:A418–A429. CrossRefGoogle Scholar
  28. 28.
    Jackovitz JF, Bayles GA (2002) Iron electrode batteries. In: Linden D, Reddy T (eds) Handbook of batteries, Chap 25, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  29. 29.
    Vijayamohanan K, Shukla AK, Sathyanarayana S (1990) Formation mechanism of porous iron electrodes. J Power Sources 32:329–339CrossRefGoogle Scholar
  30. 30.
    Vijayamohanan K, Shukla AK, Sathyanarayana S (1991) Open-circuit potential-time transients of alkaline porous iron electrodes at various states-of-charge. Electrochim Acta 36:369–380. CrossRefGoogle Scholar
  31. 31.
    Öjefors L (1977) An iron-air vehicle battery. J Power Sources 2:287–296CrossRefGoogle Scholar
  32. 32.
    Ryan MP, Toney MF, Davenport AJ, Oblonsky LJ (1999) In situ X-ray-diffraction studies of passive oxide films. MRS Bull 24:29–35CrossRefGoogle Scholar
  33. 33.
    Haupt S, Strehblow HH (1987) Corrosion, layer formation, and oxide reduction of passive iron in alkaline solution: a combined electrochemical and surface analytical study. Langmuir 3:873–885. CrossRefGoogle Scholar
  34. 34.
    Schrebler Guzmán RS, Vilche JR, Arvía AJ (1979) The potentiodynamic behaviour of iron in alkaline solutions. Electrochim Acta 24:395–403. CrossRefGoogle Scholar
  35. 35.
    Geronov Y, Tomov T, Georgiev S (1975) Mössbauer spectroscopy investigation of the iron electrode during cycling in alkaline solution. J Appl Electrochem 5:351–358. CrossRefGoogle Scholar
  36. 36.
    Monteiro JF, Ivanova YA, Kovalevsky AV et al (2016) Reduction of magnetite to metallic iron in strong alkaline medium. Electrochim Acta 193:284–292. CrossRefGoogle Scholar
  37. 37.
    Neugebauer H, Nauer G, Brinda-Konopik N, Gidaly G (1981) The in situ determination of oxidation products on iron electrodes in alkaline electrolytes using multiple internal reflection fourier transform infrared spectroscopy. J Electroanal Chem 122:381–385. CrossRefGoogle Scholar
  38. 38.
    Schmuki P, Virtanen S, Davenport AJ, Vitus CM (1996) In situ X-ray absorption near-edge spectroscopic study of the cathodic reduction of artificial iron oxide passive films. J Electrochem Soc 143:574. CrossRefGoogle Scholar
  39. 39.
    Kabanov B, Burstein R, Frumkin A (1947) The kinetics of electrode processes on the iron electrode. Discuss Faraday Soc 1:259. CrossRefGoogle Scholar
  40. 40.
    Posada JOG, Hall PJ (2016) Towards the development of safe and commercially viable nickel–iron batteries: improvements to Coulombic efficiency at high iron sulphide electrode formulations. J Appl Electrochem 46:451–458. CrossRefGoogle Scholar
  41. 41.
    Figueredo-Rodríguez HA, McKerracher RD, Insausti M et al (2017) A rechargeable, aqueous iron air battery with nanostructured electrodes capable of high energy density operation. J Electrochem Soc 164:A1148–A1157. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Energy and Climate Research - Fundamental Electrochemistry (IEK-9)Forschungszentrum Jülich GmbHJülichGermany
  2. 2.Institute of Physical ChemistryRWTH Aachen UniversityAachenGermany

Personalised recommendations