Skip to main content
Log in

Preparation and characterization of a carbon nanotube-based ceramic electrode and its potential application at detecting sulfonamide drugs

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, we report the construction, characterization, and the potential application of carbon-ceramic electrodes prepared with functionalized multi-walled carbon nanotubes (CCE/f-MWCNT) to detect two sulfonamide drugs: sodium sulfacetamide (SFC) and sulfadiazine (SFD). Prior to the construction of CCE/f-MWCNT, MWCNT samples were functionalized by using an acid treatment (HNO3/HClO4), and then characterized by FTIR spectroscopy, XRD, FESEM, and Raman spectroscopy. These techniques were also employed to characterize the prepared carbon-ceramic electrodes, and the obtained results demonstrated that the MWCNT were properly dispersed in the silica matrix. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy experiments showed that the f-MWCNT could enhance the electrochemical performance of the electrodes, as a consequence of its high electrical conductivity and large surface area. The antibacterial drugs were determined with CCE/f-MWCNT by employing CV and differential pulse voltammetry (DPV). A linear relationship between DPV peak currents and SFC and SFD concentrations was verified separately in the range from 9.9 to 177.0 µmol L− 1 in 0.04 mol L− 1 BR buffer solution pH 6.0. Detection and quantification limits were found to be 1.06 and 3.54 µmol L− 1 for SFC and 2.31 and 7.71 µmol L− 1 for SFD, respectively. Besides the good sensitivity, the CCE/f-MWCNT showed reproducibility and specificity, since its response was not significantly affected by the presence of electroactive interfering compounds. The promising analytical performance of the CCE/f-MWCNT was confirmed by determining SFC and SFD in commercial veterinary formulations, with percent recoveries ranging from 99.9 to 101.1% for SFC and from 99.8 to 102.2% for SFD.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Uslu B, Ozkan SA (2007) Electroanalytical application of carbon based electrodes to the pharmaceuticals. Anal Lett 40:817–853

    Article  CAS  Google Scholar 

  2. McCreery RL (2008) Advanced carbon electrode materials for molecular electrochemistry. Chem Rev (Washington, DC, U. S.) 108:2646–2687

    Article  CAS  Google Scholar 

  3. Skeika T, Zuconelli CR, Fujiwara ST, Pessôa CA (2011) Preparation and electrochemical characterization of a carbon ceramic electrode modified with ferrocenecarboxylic acid. Sensors 11:1361–1374

    Article  CAS  Google Scholar 

  4. Machado S, Calaça GN, Silva JP, Araújo MP, Boeré RT, Pessôa CA, Wohnrath K (2017) Electrochemical characterization of a carbon ceramic electrode modified with a Ru(II) arene complex and its application as voltammetric sensor for paracetamol. J Electrochem Soc 164:B314-B320

    Google Scholar 

  5. Shamsipur M, Karimi Z, Tabrizi MA (2017) A novel electrochemical cyanide sensor using gold nanoparticles decorated carbon ceramic electrode. Microchem J 133:485–489

    Article  CAS  Google Scholar 

  6. Anjum S, Rehman A, Hu L, Majeed S, Qi W, Zhao J, Xu G (2015) Ultrasensitive electrochemiluminescent determination of perphenazine at tris(1,10-phenanthroline)ruthenium(II)/Nafion bulk modified carbon nanotube ceramic electrode via solid-phase microextraction. Sens Actuators B 210:137–143

    Article  CAS  Google Scholar 

  7. Habibi B, Abarari M, Pournaghi-Azar MH (2014) Simultaneous determination of codeine and caffeine using single-walled carbon nanotubes modified carbon-ceramic electrode. Colloids Surf B 114:89–95

    Article  CAS  Google Scholar 

  8. Jalali F, Hassanvand Z, Dorraji OS (2014) Voltammetric determination of gabapentin by a carbon ceramic electrode modified with multiwalled carbon nanotubes and nickel-catechol complex. J Braz Chem Soc 25:1537–1544

    CAS  Google Scholar 

  9. Sarhangzadeh K, Khatami AA, Jabbari M, Bahari S (2013) Simultaneous determination of diclofenac and indomethacin using a sensitive electrochemical sensor based on multiwalled carbon nanotube and ionic liquid nanocomposite. J Appl Electrochem 43:1217–1224

    Article  CAS  Google Scholar 

  10. Habibi E, Omidinia E, Heidari H, Fazli M (2016) Flow injection amperometric detection of insulin at cobalt hydroxide nanoparticles modified carbon ceramic electrode. Anal Biochem 495:37–41

    Article  CAS  Google Scholar 

  11. Salimi A, MamKhezri H, Hallaj R (2006) Simultaneous determination of ascorbic acid, uric acid and neurotransmitters with a carbon ceramic electrode prepared by sol–gel technique. Talanta 70:823–832

    Article  CAS  Google Scholar 

  12. Razmi H, Nasiri H (2011) Trace level determination of hydrogen peroxide at a carbon ceramic electrode modified with copper oxide nanostructures. Electroanalysis 23:1691–1698

    Article  CAS  Google Scholar 

  13. Sun D, Zhu L, Zhu G (2006) Glassy carbon ceramic composite electrodes. Anal Chim Acta 564:243–247

    Article  CAS  Google Scholar 

  14. Razmi H, Hossein S, Mohammad-Rezaei R (2016) A renewable and sensitive glucose sensor based on bulk-modified reduced graphene oxide-nickel oxide nanocomposite carbon ceramic electrode. Sens Lett 14:967–973

    Article  Google Scholar 

  15. Cheemalapati S, Palanisamy S, Chen S (2014) A simple and sensitive electroanalytical determination of anxiolytic buspirone hydrochloride drug based on multiwalled carbon nanotubes modified electrode. J Appl Electrochem 44:317–323

    Article  CAS  Google Scholar 

  16. Abbaspour A, Ghaffarinejad A (2010) Preparation of a sol–gel-derived carbon nanotube ceramic electrode by microwave irradiation and its application for the determination of adenine and guanine. Electrochim Acta 55:1090–1096

    Article  CAS  Google Scholar 

  17. Habibi B, Pournaghi-Azar MH (2010) Simultaneous determination of ascorbic acid, dopamine and uric acid by use of a MWCNT modified carbon-ceramic electrode and differential pulse voltammetry. Electrochim Acta 55:5492–5498

    Article  CAS  Google Scholar 

  18. Zhu L, Tian C, Zhai J, Yang R (2007) Sol–gel derived carbon nanotubes ceramic composite electrodes for electrochemical sensing. Sens Actuators B 125:254–261

    Article  CAS  Google Scholar 

  19. Calaça GN, Pessoa CA, Wohnrath K, Nagata N (2014) Simultaneous determination of sulfamethoxazole and trimethoprim in pharmaceutical formulations by square wave voltammetry. Int J Pharm Pharm Sci 6:438–442

    Google Scholar 

  20. Torres DR, Sosnik A, Chiappetta D, Vargas EF, Martínez F (2008) Entalpía de disolución de sulfacetamida sódica en agua: comparación entre la calorimetría isoperibólica de solución y el método de Van’t. Hoff Quim Nova 31:1455–1459

    Article  CAS  Google Scholar 

  21. Braga OC, Campestrini I, Vieira IC, Spinelli A (2010) Sulfadiazine determination in pharmaceuticals by electrochemical reduction on a glassy carbon electrode. J Braz Chem Soc 21:813–820

    Article  CAS  Google Scholar 

  22. Lima D, Lopes LC, Jesus CG, Calixto CMF, Calaça GN, Viana AG, Pessôa CA (2016) Modificação de eletrodos de pasta de carbono com o polissacarídeo sulfatado porfirana: potenciais aplicações na determinação eletroanalítica de sulfonamidas. Rev Virtual Quim 8:1660–1682

    Article  Google Scholar 

  23. Baran W, Adamek E, Ziemiańska J, Sobczak A (2011) Effects of the presence of sulfonamides in the environment and their influence on human health. J Hazard Mater 196:1–15

    Article  CAS  Google Scholar 

  24. Altunok M, KÓ§nig A, Ahmed WMMM., Haddad T, Vasconcelos TG, Kümmerer K (2016) Automated determination of sulfadiazine in water, fish plasma and muscle by HPLC with on-line column-switching. Clean 44:967–974

    CAS  Google Scholar 

  25. Wen Y, Li J, Zhang W, Chen L (2011) Dispersive liquid-liquid microextraction coupled with capillary electrophoresis for simultaneous determination of sulfonamides with the aid of experimental design. Electrophoresis 32:2131–2138

    Article  CAS  Google Scholar 

  26. Kivrak I, Kivrak Ş, Harmandar M (2016) Development of a rapid method for the determination of antibiotic residues in honey using UPLC-ESI-MS/MS. Food Sci Technol (Campinas) 36:90–96

    Article  Google Scholar 

  27. Errayess SA, Lahcen AA, Idrissi L, Marcoaldi C, Chiavarini S, Amine A (2017) A sensitive method for the determination of sulfonamides in seawater samples by solid phase extraction and UV-Visible spectrophotometry. Spectrochim Acta Part A 181:276–285

    Article  Google Scholar 

  28. Lahcen AA, Errayess SA, Amine A (2016) Voltammetric determination of sulfonamides using paste electrodes based on various carbon nanomaterials. Michochim Acta 183:2169–2176

    Article  Google Scholar 

  29. Shabani-Nooshabadi M, Roostaee M (2016) Modification of carbon paste electrode with NiO/graphene oxide nanocomposite and ionic liquids for fabrication of high sensitive voltammetric sensor on sulfamethoxazole analysis. J Mol Liq 220:329–333

    Article  CAS  Google Scholar 

  30. He B, Yan S (2017) Electrochemical determination of sulfonamide based on glassy carbon electrode modified by Fe3O4/functionalized graphene. Int J Electrochem Sci 12:3001–3011

    Article  CAS  Google Scholar 

  31. He J, Chen C, Liu J (2004) Study of multi-wall carbon nanotubes self-assembled electrode and its application to the determination of carbon monoxide. Sens Actuators B 99:1–5

    Article  CAS  Google Scholar 

  32. Lev O, Tsionsky M, Gun G (1994) Voltammetric studies of composite ceramic carbon working electrodes. Anal Chim Acta 294:261–270

    Article  Google Scholar 

  33. Pretsch E, Bühlmann P, Badertscher M (2009) Structure determination of organic compounds: tables of spectral data, 4th edn. Springer, Berlin

    Google Scholar 

  34. Morsy M, Helal M, El-Okr M, Ibrahim M (2014) Preparation, purification and characterization of high purity multi-wall carbon nanotube. Spectrochim Acta Part A 132:594–598

    Article  CAS  Google Scholar 

  35. Moraes RA, Matos CF, Castro EG, Schreiner WH, Oliveira MM, Zarbin AJG (2011) The effect of different chemical treatments on the structure and stability of aqueous dispersion of iron- and iron oxide-filled multi-walled carbon nanotubes. J Braz Chem Soc 22:2191–2201

    Article  CAS  Google Scholar 

  36. Bokobza L, Zhang J (2012) Raman spectroscopic characterization of multiwall carbono nanotubes and of composites. eXPRESS Polym Lett 6:601–608

    Article  CAS  Google Scholar 

  37. Gupta VK, Saleh TA (2011) Synthesis of carbon nanotube-metal oxides composites; adsorption and photo-degradation. In: Bianco S (ed) Carbon nanotubes—from research to applications. InTech, Rijeka, 295–312

    Google Scholar 

  38. Burian A, Dore JC, Fischer HE, Sloan J (1999) Structural studies of multiwall carbon nanotubes by neutron diffraction. Phys Rev B 59:1665–1668

    Article  CAS  Google Scholar 

  39. Reznik D, Olk CH, Neumann DA, Copley JRD (1995) X-ray powder diffraction from carbon nanotubes and nanoparticles. Phys Rev B 52:116–124

    Article  CAS  Google Scholar 

  40. Kingma KJ, Hemley RJ (1994) Raman spectroscopic study of microcrystalline silica. Am Mineral 79:269–273

    CAS  Google Scholar 

  41. Souza Filho AG, Fagan SB (2007) Funcionalização de nanotubos de carbono. Quim Nova 30:1695–1703

    Article  Google Scholar 

  42. Vicentini FC, Figueiredo-Filho LCS, Janegitz BC, Santiago S, Pereira-Filho ER, Fatibello-Filho O (2011) Planejamento fatorial e superfície de resposta: otimização de um método voltamétrico para a determinação de Ag(I) empregando um eletrodo de pasta de nanotubos de carbono. Quim Nova 34:825–830

    CAS  Google Scholar 

  43. Lima D, Calaça GN, Viana AG, Pessôa CA (2018) Porphyran-capped gold nanoparticles modified carbon paste electrode: a simple and efficient electrochemical sensor for the sensitive determination of 5-fluorouracil. Appl Surf Sci 427:742–753

    Article  CAS  Google Scholar 

  44. Li L, Li F (2011) The effect of carbonyl, carboxyl and hydroxyl groups on the capacitance of carbon nanotubes. New Carbon Mater 26:224–228

    Article  Google Scholar 

  45. Zare HR, Nasirizadeh N, Chatraei F, Makarem S (2009) Electrochemical behavior of an indenedione derivative electrodeposited on a renewable sol–gel derived carbon ceramic electrode modified with multi-wall carbon nanotubes: Application for electrocatalytic determination of hydrazine. Electrochim Acta 54:2828–2836

    Article  CAS  Google Scholar 

  46. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. John Wiley & Sons, New York

    Google Scholar 

  47. Nascimento JM, Franco OL, Oliveira MDL, Andrade CAS (2012) Evaluation of magainin I interactions with lipid membranes: An optical and electrochemical study. Chem Phys Lipids 165:537–544

    Article  CAS  Google Scholar 

  48. Brett CMA, Brett AMO (1993) Electrochemistry: principles, methods, and applications. Oxford University Press, New York

    Google Scholar 

  49. Girotto EM, Paoli M (1999) Transporte de massa em polímeros intrinsicamente condutores: importância, técnicas e modelos teóricos. Quim Nova 22:358–368

    Article  CAS  Google Scholar 

  50. Gayathri SB, Kamaraj P, Arthanareeswari M, Kala SD (2014) Electrochemical determination of benzene substituted derivatives using carbon based purine electrodes through electrochemical impedance spectroscopy. Int J Electrochem Sci 9:6113–6123

    Google Scholar 

  51. Kissinger PT, Heineman WR (1996) Laboratory techniques in eletroanalytical chemistry. Marcel Dekker, New York

    Google Scholar 

  52. Momberg A, Carrera ME, Baer DV, Bruhn C, Smyth MR (1984) The oxidative voltammetric behaviour of some sulphonamides at the glassy carbon electrode. Anal Chim Acta 159:119–127

    Article  Google Scholar 

  53. Shih Y, Zen J, Kumar AS, Chen P (2004) Flow injection analysis of zinc pyrithione in hair care products on a cobalt phthalocyanine modified screen-printed carbon electrode. Talanta 62:912–917

    Article  CAS  Google Scholar 

  54. Arvand M, Ansari R, Heydari L (2011) Electrocatalytic oxidation and differential pulse voltammetric determination of sulfamethoxazole using carbon nanotube paste electrode. Mater Sci Eng B 31:1819–1825

    Article  CAS  Google Scholar 

  55. Calaça GN, Machado S, Wohnrath K, Pessôa CA, Nagata N (2015) Simultaneous electroanalytical determination of depigmenting agents in skin-whitening products. J Electrochem Soc 162:H847-H851

    Article  Google Scholar 

  56. Fotouhi L, Fatollahzadeh M, Heravi MM (2012) Electrochemical behavior and voltammetric determination of sulfaguanidine at a glassy carbon electrode modified with a multi-walled carbono nanotube. Int J Electrochem Sci 7:3919–3928

    CAS  Google Scholar 

  57. Mocak J, Bond AM, Mitchell S, Scollar G (1997) A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: application to voltammetric and stripping techniques. Pure Appl Chem 69:297–328

    Article  CAS  Google Scholar 

  58. Yadav SK, Choubey PK, Agrawal B, Goyal RN (2014) Carbon nanotube embedded poly 1,5-diaminonapthalene modified pyrolytic graphite sensor for the determination of sulfacetamide in pharmaceutical formulations. Talanta 118:96–103

    Article  CAS  Google Scholar 

  59. Balakrishnan VK, Terry KA, Toito J (2006) Determination of sulfonamide antibiotics in wastewater: A comparison of solid phase microextraction and solid phase extraction methods. J Chromatogr A 1131:1–10

    Article  CAS  Google Scholar 

  60. Betageri VS, Kulkarni R, Shivaprasad KH, Shivshankar LM (2011) Kinetic spectrophotometric determination of sulfa drugs in pharmaceutical formulations. Der Pharma Chemica 3:227–235

    CAS  Google Scholar 

  61. Injac R, Kocevar N, Kreft S Precision of micellar electrokinetic capillary chromatography in the determination of seven antibiotics in pharmaceuticals and feedstuffs. Anal Chim Acta 594:119–127

  62. Arroyo-Manzanares N, Lara FJ, Airado-Rodríguez D, Gámiz-Gracia L, García-Campaña AM (2015) Determination of sulfonamides in serum by on-line solid-phase extraction coupled to liquid chromatography with photoinduced fluorescence detection. Talanta 138:258–262

    Article  CAS  Google Scholar 

  63. Almeida SAA, Heitor AM, Montenegro MCBSM., Sales MGF (2011) Sulfadiazine-selective determination in aquaculture environment: selective potentiometric transduction by neutral or charged ionophores. Talanta 85:1508–1516

    Article  CAS  Google Scholar 

  64. Fotouhi L, Hashkavayi AB, Heravi MM (2012) Electrochemical behaviour and voltammetric determination of sulphadiazine using a multi-walled carbon nanotube composite filme-glassy carbon electrode. J Exp Nanosci 8:947–956

    Article  Google Scholar 

  65. Agência Nacional de Vigilância Sanitária (ANVISA) (2003), Guia para Validação de Métodos Analíticos e Bioanalíticos, Ministério da Saúde: Brasil. Resolução (RE) nº, 889, de 29/05/2003

  66. International Conference on Harmonisation (ICH) (2005) Harmonised Tripartite Guideline, Validation of Analytical Procedures: Text and Methodology Q2 (R1)

  67. Brasil (2011) Guia de Validação e Controle de Qualidade Analítica: Fármacos em Produtos para Alimentação Animal e Medicamentos Veterinários, Ministério da Agricultura. Secretaria de Defesa Agropecuária, Pecuária e Abastecimento (MAPA)

    Google Scholar 

Download references

Acknowledgements

The authors thank the financial support given to this work by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) and Fundação Araucária (Brazil). The authors are also grateful to the C-LABMU Institutional Laboratory (UEPG), to the GDEM research group and to the State University of Ponta Grossa (UEPG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiana Andrade Pessôa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 146 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schebeliski, A.H., Lima, D., Marchesi, L.F.Q.P. et al. Preparation and characterization of a carbon nanotube-based ceramic electrode and its potential application at detecting sulfonamide drugs. J Appl Electrochem 48, 471–485 (2018). https://doi.org/10.1007/s10800-018-1171-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-018-1171-9

Keywords

Navigation