Journal of Applied Electrochemistry

, Volume 48, Issue 4, pp 435–441 | Cite as

Electrochemical reduction of CO2 at CuAu nanoparticles: size and alloy effects

  • Evan Andrews
  • Yuxin Fang
  • John Flake
Research Article
Part of the following topical collections:
  1. Electrochemical Processes


Reduction of CO2 at Cu or Au electrodes typically yields methane or CO, respectively. Cu and Au nanoparticles and their alloys offer unique advantages over foil electrodes in terms of reduced overpotentials and product selectivities. In this work, we explore the electrochemical reduction of CO2 in aqueous electrolytes using alloys of Cu and Au including 2 and 6 nm nanoparticles along with polycrystalline foils. These results show the CuAu alloys primarily produce CO; however, yields are dramatically increased relative to Au. CuAu electrodes in the form of planar foils produce up to 3.4 times more CO yields relative to Au foil. Most remarkably, nanoparticle electrodes provide up to 12.5-fold CO yield increases relative to polycrystalline alloy foils and 175-fold CO yield increases relative to bulk Au foils. Voltammetry shows that onset potentials for CO2 reduction are shifted anodically with smaller nanoparticle sizes and with greater Au content. The dramatic increase in CO yields with nanoparticle alloys is attributed to the improved CO2 deoxygenation associated with Cu interfaces and the relatively facile desorption of CO from low-coordination Au sites.

Graphical Abstract


Copper Gold Alloy CO2 reduction Electrocatalysis Carbon dioxide Nanoparticle 



This work was supported by the National Science Foundation under Grant CBET-1438385.

Supplementary material

10800_2018_1166_MOESM1_ESM.docx (454 kb)
Supplementary material 1 (DOCX 453 KB)


  1. 1.
    Hori Y, Kikuchi K, Suzuki S (1985) Chem Lett 14(11):1695–1698CrossRefGoogle Scholar
  2. 2.
    Hori Y (2008) Modern aspects of electrochemistry. Springer, New York, pp 89–189CrossRefGoogle Scholar
  3. 3.
    Hori Y, Wakebe H, Tsukamoto T, Koga O (1994) Electrochim Acta 39(11):1833–1839CrossRefGoogle Scholar
  4. 4.
    Jitaru M, Lowy DA, Toma M, Toma BC, Oniciu L (1997) J Appl Electrochem 27(8):875–889CrossRefGoogle Scholar
  5. 5.
    Hori Y, Takahashi I, Koga O, Hoshi N (2002) J Phys Chem B 106(1):15–17CrossRefGoogle Scholar
  6. 6.
    Hori Y, Kikuchi K, Murata A, Suzuki S (1986) Chem Lett 15(6):897–898CrossRefGoogle Scholar
  7. 7.
    DeWulf DW, Jin T, Bard AJ (1989) J Electrochem Soc 136(6):1686–1691CrossRefGoogle Scholar
  8. 8.
    Kuhl KP, Cave ER, Abram DN, Jaramillo TF (2012) Energy Environ Sci 5(5):7050–7059CrossRefGoogle Scholar
  9. 9.
    Zhu W, Zhang Y-J, Zhang H, Lv H, Li Q, Michalsky R, Peterson AA, Sun S (2014) J Am Chem Soc 136(46):16132–16135CrossRefGoogle Scholar
  10. 10.
    Kauffman DR, Alfonso D, Matranga C, Qian H, Jin R (2012) J Am Chem Soc 134(24):10237–10243CrossRefGoogle Scholar
  11. 11.
    Perrault SD, Chan WCW (2009) J Am Chem Soc 131(47):17042–17043CrossRefGoogle Scholar
  12. 12.
    Martin MN, Basham JI, Chando P, Eah S-K (2010) Langmuir 26(10):7410–7417CrossRefGoogle Scholar
  13. 13.
    Negishi Y, Nobusada K, Tsukuda T (2005) J Am Chem Soc 127(14):5261–5270CrossRefGoogle Scholar
  14. 14.
    Boyen HG, Kästle G, Weigl F, Koslowski B, Dietrich C, Ziemann P, Spatz JP, Riethmüller S, Hartmann C, Möller M (2002) Science 297(5586):1533–1536CrossRefGoogle Scholar
  15. 15.
    Reske R, Mistry H, Behafarid F, Roldan B, Cuenya, Strasser P (2014) J Am Chem Soc 136(19):6978–6986CrossRefGoogle Scholar
  16. 16.
    Wu S-H, Chen D-H (2004) J Colloid Interface Sci 273(1):165–169CrossRefGoogle Scholar
  17. 17.
    Lisiecki I, Billoudet F, Pileni MP (1996) J Phys Chem 100(10):4160–4166CrossRefGoogle Scholar
  18. 18.
    Zhu W, Michalsky R, Metin Ö, Lv H, Guo S, Wright CJ, Sun X, Peterson AA, Sun S (2013) J Am Chem Soc 135(45):16833–16836CrossRefGoogle Scholar
  19. 19.
    Chen Y, Li CW, Kanan MW (2012) J Am Chem Soc 134(49):19969–19972CrossRefGoogle Scholar
  20. 20.
    Baturina OA, Lu Q, Padilla MA, Xin L, Li W, Serov A, Artyushkova K, Atanassov P, Xu F, Epshteyn A, Brintlinger T, Schuette M, Collins GE (2014) ACS Catal 4(10):3682–3695CrossRefGoogle Scholar
  21. 21.
    Kim D, Resasco J, Yu Y, Asiri AM, Yang P (2014) Nat Commun 5:4948CrossRefGoogle Scholar
  22. 22.
    Christophe J, Doneux T, Buess-Herman C (2012) Electrocatalysis 3(2):139–146CrossRefGoogle Scholar
  23. 23.
    Hansen HA, Montoya JH, Zhang Y-J, Shi C, Peterson AA, Nørskov JK (2013) Catal Lett 143(7):631–635CrossRefGoogle Scholar
  24. 24.
    Nie X, Esopi MR, Janik MJ, Asthagiri A (2013) Angew Chem Int Ed 52(9):2459–2462CrossRefGoogle Scholar
  25. 25.
    Schouten KJP, Kwon Y, van der Ham CJM, Qin Z, Koper MTM (2011) Chem Sci 2(10):1902–1909CrossRefGoogle Scholar
  26. 26.
    Hansen HA, Varley JB, Peterson AA, Nørskov JK (2013) J Phys Chem Lett 4(3):388–392CrossRefGoogle Scholar
  27. 27.
    Peterson AA, Nørskov JK (2012) J Phys Chem Lett 3(2):251–258CrossRefGoogle Scholar
  28. 28.
    Hirunsit P, Soodsawang W, Limtrakul J (2015) J Phys Chem C 119(15):8238–8249CrossRefGoogle Scholar
  29. 29.
    Hirunsit P (2013) J Phys Chem C 117(16):8262–8268CrossRefGoogle Scholar
  30. 30.
    Hostetler MJ, Zhong C-J, Yen BKH, Anderegg J, Gross SM, Evans ND, Porter M, Murray RW (1998) J Am Chem Soc 120(36):9396–9397CrossRefGoogle Scholar
  31. 31.
    Yin J, Shan S, Yang L, Mott D, Malis O, Petkov V, Cai F, Shan Ng M, Luo J, Chen BH (2012) Chem Mater 24(24):4662–4674CrossRefGoogle Scholar
  32. 32.
    Maye MM, Zheng W, Leibowitz FL, Ly NK, Zhong C-J (2000) Langmuir 16(2):490–497CrossRefGoogle Scholar
  33. 33.
    Friebel D, Mbuga F, Rajasekaran S, Miller DJ, Ogasawara H, Alonso-Mori R, Sokaras D, Nordlund D, Weng T-C, Nilsson A (2014) J Phys Chem C 118(15):7954–7961CrossRefGoogle Scholar
  34. 34.
    Llorca J, Domínguez M, Ledesma C, Chimentão RJ, Medina F, Sueiras J, Angurell I, Seco M, Rossell O (2008) J Catal 258(1):187–198CrossRefGoogle Scholar
  35. 35.
    Kinoshita K (1990) J Electrochem Soc 137(3):845–848CrossRefGoogle Scholar
  36. 36.
    Shao M, Peles A, Shoemaker K (2011) Nano Lett 11(9):3714–3719CrossRefGoogle Scholar
  37. 37.
    Uchida M, Park Y-C, Kakinuma K, Yano H, Tryk DA, Kamino T, Uchida H, Watanabe M (2013) Phys Chem Chem Phys 15(27):11236–11247CrossRefGoogle Scholar
  38. 38.
    Back S, Yeom MS, Jung Y (2015) ACS Catal 5(9):5089–5096CrossRefGoogle Scholar
  39. 39.
    Mistry H, Reske R, Zeng Z, Zhao Z-J, Greeley J, Strasser P, Cuenya BR (2014) J Am Chem Soc 136(47):16473–16476CrossRefGoogle Scholar
  40. 40.
    Sham TK, Hiraya A, Watanabe M (1997) Phys Rev B 55(12):7585CrossRefGoogle Scholar
  41. 41.
    Bagus PS, Nelin CJ, Bauschlicher CW (1984) J Vac Sci Technol A 2(2):905–909CrossRefGoogle Scholar
  42. 42.
    Lysgaard S, Myrdal JSG, Hansen HA, Vegge T (2015) Phys Chem Chem Phys 17(42):28270–28276CrossRefGoogle Scholar
  43. 43.
    Rasul S, Anjum DH, Jedidi A, Minenkov Y, Cavallo L, Takanabe K (2015) Angew Chem 127(7):2174–2178CrossRefGoogle Scholar
  44. 44.
    Adit Maark T, Nanda BRK (2016) J Phys Chem C 120(16):8781–8789CrossRefGoogle Scholar
  45. 45.
    Jovanov ZP, Hansen HA, Varela AS, Malacrida P, Peterson AA, Nørskov JK, Stephens IEL, Chorkendorff I (2016) J Catal 343:215–231CrossRefGoogle Scholar
  46. 46.
    Choi J, Kim MJ, Ahn SH, Choi I, Jang JH, Ham YS, Kim JJ, Kim S-K (2016) Chem Eng J 299:37–44CrossRefGoogle Scholar
  47. 47.
    Monzo J, Malewski Y, Kortlever R, Vidal-Iglesias FJ, Solla-Gullon J, Koper MTM, Rodriguez P (2015) J Mater Chem A 3(47):23690–23698CrossRefGoogle Scholar
  48. 48.
    Reske R, Duca M, Oezaslan M, Schouten KJP, Koper MTM, Strasser P (2013) J Phys Chem Lett 4(15):2410–2413CrossRefGoogle Scholar
  49. 49.
    Todoroki N, Yokota N, Nakahata S, Nakamura H, Wadayama T (2016) Electrocatalysis 7(1):97–103CrossRefGoogle Scholar
  50. 50.
    Varela AS, Schlaup C, Jovanov ZP, Malacrida P, Horch S, Stephens IEL, Chorkendorff I (2013) J Phys Chem C 117(40):20500–20508CrossRefGoogle Scholar
  51. 51.
    Feng X, Jiang K, Fan S, Kanan MW (2015) J Am Chem Soc 137(14):4606–4609CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Cain Department of Chemical EngineeringLouisiana State UniversityBaton RougeUSA

Personalised recommendations