Skip to main content
Log in

Investigations on electrode configurations for anion exchange membrane electrolysis

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Investigations on configurations and properties of the electrode in the membrane electrode assembly (MEA) of an electrolyzer using an anion exchange membrane (AEM) were performed based on an experimental study using a small single electrolysis cell. First, two different configurations of the catalyst layer (CL) for the MEA were prepared using commercially available materials: a catalyst-coated membrane (CCM) and a catalyst-coated substrate (CCS). Experimental electrolysis results revealed that the electrode configuration appropriate for the MEA of AEM electrolyzers is CCM-cathode and CCS-anode. Then, the effect of electrode properties (catalyst loading and binder content in CLs) on electrolysis performance was examined experimentally, revealing an optimal range of catalyst loading and binder content.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\(i\) :

Current density, A cm− 2

\({R_{{\text{cell}}}}\) :

Ohmic resistance of cell, Ω cm2

\({T_{{\text{cell}}}}\) :

Cell temperature, K (°C)

t :

Time, sec (min)

\({V_{{\text{cell}}}}\) :

Cell voltage, V

\({w_{{\text{cat\_A}}}}\) :

Catalyst loading in anode catalyst layer, mg cm− 2

\({w_{{\text{cat\_C}}}}\) :

Catalyst loading in cathode catalyst layer, mg cm− 2

\({\omega _{\text{i}}}\) :

Ionomer (binder) content in catalyst layer formed by catalyst-coated membrane, wt%

\({\omega _{\text{P}}}\) :

Polytetrafluoroethylene (binder) content in catalyst layer formed by catalyst-coated substrate, wt%

AEM:

Anion exchange membrane

AFC:

Alkaline fuel cell

CCM:

Catalyst-coated membrane

CCS:

Catalyst-coated substrate

CL:

Catalyst layer

GDL:

Gas diffusion layer

HER:

Hydrogen evolution reaction

IEC:

Ion exchange capacity

IPA:

Isopropyl alcohol

MEA:

Membrane electrode assembly

NHE:

Normal hydrogen electrode

OER:

Oxygen evolution reaction

OPE:

Octylphenol ethoxylate

PEM:

Proton exchange membrane

PEMFC:

Proton exchange membrane fuel cell

PFA:

Perfluoroalkoxy alkane

PGM:

Platinum-group metals

PTFE:

Polytetrafluoroethylene

RES:

Renewable energy sources

References

  1. Mazloomi K, Gimes C (2012) Hydrogen as an energy carrier: prospects and challenges. Renew Sust Energy Rev 16:3024–3033. https://doi.org/10.1016/j.rser.2012.02.028

    Article  CAS  Google Scholar 

  2. Gahleitner G (2013) Hydrogen from renewable electricity: an international review of power-togas pilot plants for stationary application. Int J Hydrog Energy 38:2039–2061. https://doi.org/10.1016/j.ijhydene.2012.12.010

    Article  CAS  Google Scholar 

  3. Zoulias E, Varkaraki E, Lymberopoulos N (2004) A review on water electrolysis. TCJST 4:41–71

    Google Scholar 

  4. Carmo M, Fritz DL, Mergel J, Stolten D (2013) A comprehensive review on PEM water electrolysis. Int J Hydrog Energy 38:4901–4934. https://doi.org/10.1016/j.ijhydene.2013.01.151

    Article  CAS  Google Scholar 

  5. Moçoteguy P, Brisse A (2013) A review and comprehensive analysis of degradation mechanisms of solid oxide electrolysis cells. Int J Hydrog Energy 38:15887–15902. https://doi.org/10.1016/j.ijhydene.2013.09.045

    Article  Google Scholar 

  6. Ito H, Maeda T, Nakano A, Kato A, Yoshida T (2013) Influence of pore structural properties of current collectors on the performance of proton exchange membrane electrolyzer. Electrochim Acta 100:242–248. https://doi.org/10.1016/j.electacta.2012.05.068

    Article  CAS  Google Scholar 

  7. Ito H (2015) Membranes. In: Bessarabov D, Wang H, Li H, Zhao N (eds) PEM electrolysis for hydrogen production. CRC Press, New York, Ch 6

    Google Scholar 

  8. Wang C (2015) Bipolar plates and plate materials. In: Bessarabov D, Wang H, Li H, Zhao N (eds) PEM electrolysis for hydrogen production. CRC Press, New York, Ch 7

    Google Scholar 

  9. Ayers KE, Anderson EB, Capuano CB, Carter BD, Dalton LT, Hanlon G, Manco J, Niedzwiecki M (2010) Research advances towards low cost, high efficiency PEM electrolysis. ECS Trans 33:3–15. https://doi.org/10.1149/1.3484496

    Article  CAS  Google Scholar 

  10. Merle G, Wessling M, Nijmeijer K (2011) Anion exchange membranes for alkaline fuel cells: a review. J Mem Sci 377:1–35. https://doi.org/10.1016/j.memsci.2011.04.043

    Article  CAS  Google Scholar 

  11. Yanagi H, Fukuta K (2008) Anion exchange membrane and ionomer for alkaline membrane fuel cells (AMFCs). ECS Trans 16:257–262. https://doi.org/10.1149/1.2981860

    Article  CAS  Google Scholar 

  12. Fukuta K, Inoue H, Watanabe S, Yanagi H (2009) In-situ observation of CO2 through the self-purging in alkaline membrane fuel cell (AMFC). ECS Trans 19:23–37. https://doi.org/10.1149/1.3271358

    Article  CAS  Google Scholar 

  13. Cao YC, Wu X, Scott K (2012) A quaternary ammonium grafted poly vinyl benzyl chloride membrane for alkaline anion exchange membrane water electrolysers with no-noble-metal catalysts. Int J Hydrog Energy 37:9524–9528. https://doi.org/10.1016/j.ijhydene.2012.03.116

    Article  CAS  Google Scholar 

  14. Faraj M, Boccia M, Miller H, Martini F, Borsacchi S, Geppi M, Pucci A (2012) New LDPE based anion-exchange membranes for alkaline solid polymeric electrolyte water electrolysis. Int J Hydrog Energy 37:14992–15002. https://doi.org/10.1016/j.ijhydene.2012.08.012

    Article  CAS  Google Scholar 

  15. Leng Y, Chen G, Mendoza AJ, Tighe TB, Hickner MA, Wang CY (2012) Solid-state water electrolysis with an alkaline membrane. J Am Chem Soc 134:9054–9057. https://doi.org/10.1021/ja302439z

    Article  CAS  Google Scholar 

  16. Wu X, Scott K (2013) A Li-doped Co3O4 oxygen evolution catalyst for non-precious metal alkaline anion exchange membrane water electrolysers. Int J Hydrog Energy 38:3123–3129. https://doi.org/10.1016/j.ijhydene.2012.12.087

    Article  CAS  Google Scholar 

  17. Xiao L, Zhang S, Pan J, Yang C, He M, Zhuamg L, Lu J (2012) First implementation of alkaline polymer electrolyte water electrolysis working only with pure water. Energy Environ Sci 5:7869–7871. https://doi.org/10.1039/C2EE22146B

    Article  CAS  Google Scholar 

  18. Pavel CC, Cecconi F, Emiliani C, Santiccioli S, Scaffidi A, Catanorchi S, Comotti M (2014) High efficient platinum group metal free based membrane-electrode assembly for anion exchange membrane water electrolysis. Angew Chem Int Ed 53:1378–1381. https://doi.org/10.1002/anie.201308099

    Article  CAS  Google Scholar 

  19. Vincent I, Kruger A, Bessarabov D (2017) Development of efficient membrane electrode assembly for low cost hydrogen production by anion exchange membrane electrolysis. Int J Hydrog Energy 42:10752–10761. https://doi.org/10.1016/j.ijhydene.2017.03.069

    Article  CAS  Google Scholar 

  20. Kocha SS (2010) Principle of MEA preparation. In: Vielstich W, Lamm A, Gasteiger HA (eds.) Handbook of fuel cells, vol 3. Wiley, Chichester, Ch 43. https://doi.org/10.1002/9780470974001.f303047

  21. Ito H, Maeda T, Nakano A, Hasegawa Y, Yokoi M, Hwang CM, Ishida M, Kato A, Yoshida T (2010) Effect of flow regime of circulating water on a proton exchange membrane electrolyzer. Int J Hydrog Energy 35:9550–9560. https://doi.org/10.1016/j.ijhydene.2010.06.103

    Article  CAS  Google Scholar 

  22. Hwang CM, Ishida M, Ito H, Maeda T, Nakano A, Hasegawa Y, Yokoi N, Kato A, Yoshida T (2011) Influence of properties of gas diffusion layers on the performance of polymer electrolyte-based unitized reversible fuel cells. Int J Hydrog Energy 36:1740–1753. https://doi.org/10.1016/j.ijhydene.2010.10.091

    Article  CAS  Google Scholar 

  23. Yanagi H, Fukuta K (2010) Electrolyte materials for alkaline fuel cells and their cell performance. J Hydrog Energy Syst Soc Japan 35–2:9–14 (in Japanese).

    Google Scholar 

  24. Hibbs MR, Fujimoto CH, Cornelius CJ (2009) Synthesis and characterization of poly (phenylene)-based anion exchange membranes for alkaline fuel cells. Macromolecules 42:8316–8321. https://doi.org/10.1021/ma901538c

    Article  CAS  Google Scholar 

  25. Switzer EE, Olson TS, Datye AK, Atanassov P, Hibbs MR, Fujimoto C, Cornelius CJ (2010) Novel KOH-free anion-exchange membrane fuel cell: performance comparison of alternative anion-exchange ionomers in catalyst ink. Electrochim Acta 55:3404–3408. https://doi.org/10.1016/j.electacta.2009.12.073

    Article  CAS  Google Scholar 

  26. Wu X, Scott K (2012) A polymethacrylate-based quaternary ammonium OH ionomer binder for non-precious metal alkaline anion exchange membrane water electrolysers. J Power Sources 214:124–129. https://doi.org/10.1016/j.jpowsour.2012.03.069

    Article  CAS  Google Scholar 

  27. Leng Y, Wang L, Hickner MA, Wang CY (2015) Alkaline membrane fuel cells with in-situ cross-linked ionomers. Electrochim Acta 152:93–100. https://doi.org/10.1016/j.electacta.2014.11.055

    Article  CAS  Google Scholar 

  28. Piana M, Boccia M, Filpi A, Flammia E, Miller HA, Orsini M, Salusti F, Santiccioli S, Ciardelli F, Pucci A (2010) H2/air alkaline membrane fuel cell performance and durability, using novel ionomer and non-platinum group metal cathode catalyst. J Power Sources 195:5875–5881. https://doi.org/10.1016/j.jpowsour.2009.12.085

    Article  CAS  Google Scholar 

  29. Wilson MS, Gottesfeld S (1992) Thin-film catalyst layers for polymer electrolyte fuel cell electrodes. J Appl Electrochem 22:1–7. https://doi.org/10.1007/BF01093004

    Article  CAS  Google Scholar 

  30. Xie J, More KL, Zawodzinski TA, Smith WH (2004) Porosimetry of MEAs made by “Thin Film Decal” method and its effect on performance of PEFCs. J Electrochem Soc 151:A1841–A1846. https://doi.org/10.1149/1.1796991

    Article  CAS  Google Scholar 

  31. Xie J, Xu F, Wood DL III, More KL, Zawodzinski TA, Smith WH (2010) Influence of ionomer content on the structure and performance of PEFC membrane electrode assembles. Electrochim Acta 55:7404–7412. https://doi.org/10.1016/j.electacta.2010.06.067

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Japan Society for the Promotion of Science (JSPS) through the Grants-in-Aid for Scientific Research (KAKENHI)—Grant Number JP17K05970. The authors wish to express their gratitude to Tokuyama Corporation for their helpful advice. The authors also thank Mr. Akira Takatsuki (AIST) for his SEM expertise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Ito.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ito, H., Miyazaki, N., Sugiyama, S. et al. Investigations on electrode configurations for anion exchange membrane electrolysis. J Appl Electrochem 48, 305–316 (2018). https://doi.org/10.1007/s10800-018-1159-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-018-1159-5

Keywords

Navigation