Journal of Applied Electrochemistry

, Volume 48, Issue 3, pp 305–316 | Cite as

Investigations on electrode configurations for anion exchange membrane electrolysis

  • Hiroshi ItoEmail author
  • Naoki Miyazaki
  • Shota Sugiyama
  • Masayoshi Ishida
  • Yuka Nakamura
  • Shinya Iwasaki
  • Yasuo Hasegawa
  • Akihiro Nakano
Research Article
Part of the following topical collections:
  1. Hydrogen production


Investigations on configurations and properties of the electrode in the membrane electrode assembly (MEA) of an electrolyzer using an anion exchange membrane (AEM) were performed based on an experimental study using a small single electrolysis cell. First, two different configurations of the catalyst layer (CL) for the MEA were prepared using commercially available materials: a catalyst-coated membrane (CCM) and a catalyst-coated substrate (CCS). Experimental electrolysis results revealed that the electrode configuration appropriate for the MEA of AEM electrolyzers is CCM-cathode and CCS-anode. Then, the effect of electrode properties (catalyst loading and binder content in CLs) on electrolysis performance was examined experimentally, revealing an optimal range of catalyst loading and binder content.

Graphical Abstract


Anion exchange membrane Catalyst layer Catalyst-coated membrane Catalyst-coated substrate Binder 

List of symbols


Current density, A cm− 2


Ohmic resistance of cell, Ω cm2


Cell temperature, K (°C)


Time, sec (min)


Cell voltage, V


Catalyst loading in anode catalyst layer, mg cm− 2


Catalyst loading in cathode catalyst layer, mg cm− 2

\({\omega _{\text{i}}}\)

Ionomer (binder) content in catalyst layer formed by catalyst-coated membrane, wt%

\({\omega _{\text{P}}}\)

Polytetrafluoroethylene (binder) content in catalyst layer formed by catalyst-coated substrate, wt%



Anion exchange membrane


Alkaline fuel cell


Catalyst-coated membrane


Catalyst-coated substrate


Catalyst layer


Gas diffusion layer


Hydrogen evolution reaction


Ion exchange capacity


Isopropyl alcohol


Membrane electrode assembly


Normal hydrogen electrode


Oxygen evolution reaction


Octylphenol ethoxylate


Proton exchange membrane


Proton exchange membrane fuel cell


Perfluoroalkoxy alkane


Platinum-group metals




Renewable energy sources



The authors gratefully acknowledge the financial support from the Japan Society for the Promotion of Science (JSPS) through the Grants-in-Aid for Scientific Research (KAKENHI)—Grant Number JP17K05970. The authors wish to express their gratitude to Tokuyama Corporation for their helpful advice. The authors also thank Mr. Akira Takatsuki (AIST) for his SEM expertise.


  1. 1.
    Mazloomi K, Gimes C (2012) Hydrogen as an energy carrier: prospects and challenges. Renew Sust Energy Rev 16:3024–3033. CrossRefGoogle Scholar
  2. 2.
    Gahleitner G (2013) Hydrogen from renewable electricity: an international review of power-togas pilot plants for stationary application. Int J Hydrog Energy 38:2039–2061. CrossRefGoogle Scholar
  3. 3.
    Zoulias E, Varkaraki E, Lymberopoulos N (2004) A review on water electrolysis. TCJST 4:41–71Google Scholar
  4. 4.
    Carmo M, Fritz DL, Mergel J, Stolten D (2013) A comprehensive review on PEM water electrolysis. Int J Hydrog Energy 38:4901–4934. CrossRefGoogle Scholar
  5. 5.
    Moçoteguy P, Brisse A (2013) A review and comprehensive analysis of degradation mechanisms of solid oxide electrolysis cells. Int J Hydrog Energy 38:15887–15902. CrossRefGoogle Scholar
  6. 6.
    Ito H, Maeda T, Nakano A, Kato A, Yoshida T (2013) Influence of pore structural properties of current collectors on the performance of proton exchange membrane electrolyzer. Electrochim Acta 100:242–248. CrossRefGoogle Scholar
  7. 7.
    Ito H (2015) Membranes. In: Bessarabov D, Wang H, Li H, Zhao N (eds) PEM electrolysis for hydrogen production. CRC Press, New York, Ch 6Google Scholar
  8. 8.
    Wang C (2015) Bipolar plates and plate materials. In: Bessarabov D, Wang H, Li H, Zhao N (eds) PEM electrolysis for hydrogen production. CRC Press, New York, Ch 7Google Scholar
  9. 9.
    Ayers KE, Anderson EB, Capuano CB, Carter BD, Dalton LT, Hanlon G, Manco J, Niedzwiecki M (2010) Research advances towards low cost, high efficiency PEM electrolysis. ECS Trans 33:3–15. CrossRefGoogle Scholar
  10. 10.
    Merle G, Wessling M, Nijmeijer K (2011) Anion exchange membranes for alkaline fuel cells: a review. J Mem Sci 377:1–35. CrossRefGoogle Scholar
  11. 11.
    Yanagi H, Fukuta K (2008) Anion exchange membrane and ionomer for alkaline membrane fuel cells (AMFCs). ECS Trans 16:257–262. CrossRefGoogle Scholar
  12. 12.
    Fukuta K, Inoue H, Watanabe S, Yanagi H (2009) In-situ observation of CO2 through the self-purging in alkaline membrane fuel cell (AMFC). ECS Trans 19:23–37. CrossRefGoogle Scholar
  13. 13.
    Cao YC, Wu X, Scott K (2012) A quaternary ammonium grafted poly vinyl benzyl chloride membrane for alkaline anion exchange membrane water electrolysers with no-noble-metal catalysts. Int J Hydrog Energy 37:9524–9528. CrossRefGoogle Scholar
  14. 14.
    Faraj M, Boccia M, Miller H, Martini F, Borsacchi S, Geppi M, Pucci A (2012) New LDPE based anion-exchange membranes for alkaline solid polymeric electrolyte water electrolysis. Int J Hydrog Energy 37:14992–15002. CrossRefGoogle Scholar
  15. 15.
    Leng Y, Chen G, Mendoza AJ, Tighe TB, Hickner MA, Wang CY (2012) Solid-state water electrolysis with an alkaline membrane. J Am Chem Soc 134:9054–9057. CrossRefGoogle Scholar
  16. 16.
    Wu X, Scott K (2013) A Li-doped Co3O4 oxygen evolution catalyst for non-precious metal alkaline anion exchange membrane water electrolysers. Int J Hydrog Energy 38:3123–3129. CrossRefGoogle Scholar
  17. 17.
    Xiao L, Zhang S, Pan J, Yang C, He M, Zhuamg L, Lu J (2012) First implementation of alkaline polymer electrolyte water electrolysis working only with pure water. Energy Environ Sci 5:7869–7871. CrossRefGoogle Scholar
  18. 18.
    Pavel CC, Cecconi F, Emiliani C, Santiccioli S, Scaffidi A, Catanorchi S, Comotti M (2014) High efficient platinum group metal free based membrane-electrode assembly for anion exchange membrane water electrolysis. Angew Chem Int Ed 53:1378–1381. CrossRefGoogle Scholar
  19. 19.
    Vincent I, Kruger A, Bessarabov D (2017) Development of efficient membrane electrode assembly for low cost hydrogen production by anion exchange membrane electrolysis. Int J Hydrog Energy 42:10752–10761. CrossRefGoogle Scholar
  20. 20.
    Kocha SS (2010) Principle of MEA preparation. In: Vielstich W, Lamm A, Gasteiger HA (eds.) Handbook of fuel cells, vol 3. Wiley, Chichester, Ch 43.
  21. 21.
    Ito H, Maeda T, Nakano A, Hasegawa Y, Yokoi M, Hwang CM, Ishida M, Kato A, Yoshida T (2010) Effect of flow regime of circulating water on a proton exchange membrane electrolyzer. Int J Hydrog Energy 35:9550–9560. CrossRefGoogle Scholar
  22. 22.
    Hwang CM, Ishida M, Ito H, Maeda T, Nakano A, Hasegawa Y, Yokoi N, Kato A, Yoshida T (2011) Influence of properties of gas diffusion layers on the performance of polymer electrolyte-based unitized reversible fuel cells. Int J Hydrog Energy 36:1740–1753. CrossRefGoogle Scholar
  23. 23.
    Yanagi H, Fukuta K (2010) Electrolyte materials for alkaline fuel cells and their cell performance. J Hydrog Energy Syst Soc Japan 35–2:9–14 (in Japanese).Google Scholar
  24. 24.
    Hibbs MR, Fujimoto CH, Cornelius CJ (2009) Synthesis and characterization of poly (phenylene)-based anion exchange membranes for alkaline fuel cells. Macromolecules 42:8316–8321. CrossRefGoogle Scholar
  25. 25.
    Switzer EE, Olson TS, Datye AK, Atanassov P, Hibbs MR, Fujimoto C, Cornelius CJ (2010) Novel KOH-free anion-exchange membrane fuel cell: performance comparison of alternative anion-exchange ionomers in catalyst ink. Electrochim Acta 55:3404–3408. CrossRefGoogle Scholar
  26. 26.
    Wu X, Scott K (2012) A polymethacrylate-based quaternary ammonium OH ionomer binder for non-precious metal alkaline anion exchange membrane water electrolysers. J Power Sources 214:124–129. CrossRefGoogle Scholar
  27. 27.
    Leng Y, Wang L, Hickner MA, Wang CY (2015) Alkaline membrane fuel cells with in-situ cross-linked ionomers. Electrochim Acta 152:93–100. CrossRefGoogle Scholar
  28. 28.
    Piana M, Boccia M, Filpi A, Flammia E, Miller HA, Orsini M, Salusti F, Santiccioli S, Ciardelli F, Pucci A (2010) H2/air alkaline membrane fuel cell performance and durability, using novel ionomer and non-platinum group metal cathode catalyst. J Power Sources 195:5875–5881. CrossRefGoogle Scholar
  29. 29.
    Wilson MS, Gottesfeld S (1992) Thin-film catalyst layers for polymer electrolyte fuel cell electrodes. J Appl Electrochem 22:1–7. CrossRefGoogle Scholar
  30. 30.
    Xie J, More KL, Zawodzinski TA, Smith WH (2004) Porosimetry of MEAs made by “Thin Film Decal” method and its effect on performance of PEFCs. J Electrochem Soc 151:A1841–A1846. CrossRefGoogle Scholar
  31. 31.
    Xie J, Xu F, Wood DL III, More KL, Zawodzinski TA, Smith WH (2010) Influence of ionomer content on the structure and performance of PEFC membrane electrode assembles. Electrochim Acta 55:7404–7412. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Hiroshi Ito
    • 1
    Email author
  • Naoki Miyazaki
    • 2
  • Shota Sugiyama
    • 2
  • Masayoshi Ishida
    • 2
  • Yuka Nakamura
    • 3
  • Shinya Iwasaki
    • 3
  • Yasuo Hasegawa
    • 1
    • 3
  • Akihiro Nakano
    • 1
  1. 1.Research Institute for Energy ConservationNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  2. 2.University of TsukubaTsukubaJapan
  3. 3.Tokyo Institute of TechnologyYokohamaJapan

Personalised recommendations