Skip to main content
Log in

Electrocatalytic hydrogen evolution with cobalt–poly(4-vinylpyridine) metallopolymers

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A facile synthetic pathway using poly(4-vinylpyridine) as a polypyridyl platform is reported for the formation of a metallopolymer. Electrochemical studies indicate that the metallopolymer acts as an efficient H2 evolution catalyst similar to cobalt polypyridyl complexes. It is also observed that the metallopolymer is transformed to cobalt particles when a cathodic potential is applied in the presence of an acid. Electrochemical measurements indicate that an FTO electrode coated with these cobalt particles also acts as an efficient hydrogen evolution catalyst. Approximately 80 µmoles of H2 gas can be collected during 2 h of electrolysis at − 1.5 V (vs. Fc+/0) in the presence of 60 mM of acetic acid. A comprehensive study of the electrochemical and electrocatalytic behavior of cobalt–poly(4-vinylpyridine) is discussed in detail.

Graphical Abstract

Poly(4-vinylpyridine) as a precursor for electrodeposited cobalt particles: a cobalt coat derived by a metallopolymer acts as an efficient H2 evolution catalyst. It can transform to a cobalt coat when a potential above − 1.1 V is applied in acid medium. Exchange current density of 10−2.67 mA cm−2 was observed from the Co-coat at − 1.5 V (vs. Fc+/0).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Helm ML, Stewart MP, Bullock RM et al (2011) A synthetic nickel electrocatalyst with a turnover frequency above 100,000 s−1 for H2 production. Science 333:863–866

    Article  CAS  Google Scholar 

  2. Zee DZ, Chantarojsiri T, Long JR, Chang CJ (2015) Metal-polypyridyl catalysts for electro- and photochemical reduction of water to hydrogen. Acc Chem Res 48:2027–2036. https://doi.org/10.1021/acs.accounts.5b00082

    Article  CAS  Google Scholar 

  3. Eckenhoff WT, McNamara WR, Du P, Eisenberg R (2013) Cobalt complexes as artificial hydrogenases for the reductive side of water splitting. Biochim Biophys Acta 1827:958–973. https://doi.org/10.1016/j.bbabio.2013.05.003

    Article  CAS  Google Scholar 

  4. McKone JR, Marinescu SC, Brunschwig BS et al (2014) Earth-abundant hydrogen evolution electrocatalysts. Chem Sci 5:865–878. https://doi.org/10.1039/C3SC51711J

    Article  CAS  Google Scholar 

  5. Losse S, Vos JG, Rau S (2010) Catalytic hydrogen production at cobalt centres. Coord Chem Rev 254:2492–2504. https://doi.org/10.1016/j.ccr.2010.06.004

    Article  CAS  Google Scholar 

  6. Du P, Eisenberg R (2012) Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: recent progress and future challenges. Energy Environ Sci 5:6012. https://doi.org/10.1039/c2ee03250c

    Article  CAS  Google Scholar 

  7. Queyriaux N, Jane RT, Massin J et al (2015) Recent developments in hydrogen evolving molecular cobalt(II)-polypyridyl catalysts. Coord Chem Rev 304–305:3–19. https://doi.org/10.1016/j.ccr.2015.03.014

    Article  Google Scholar 

  8. Dempsey JL, Brunschwig BS, Winkler JR, Gray HB (2009) Hydrogen evolution catalyzed by cobaloximes. Acc Chem Res 42:1995–2004. https://doi.org/10.1021/ar900253e

    Article  CAS  Google Scholar 

  9. Razavet M, Artero V, Fontecave M (2005) Proton electroreduction catalyzed by cobaloximes: functional models for hydrogenases. Inorg Chem 44:4786–4795. https://doi.org/10.1021/ic050167z

    Article  CAS  Google Scholar 

  10. Reuillard B, Warnan J, Leung JJ et al (2016) A poly(cobaloxime)/carbon nanotube electrode: freestanding buckypaper with polymer-enhanced H2-evolution performance. Angew Chem Int Ed 55:3952–3957. https://doi.org/10.1002/anie.201511378

    Article  CAS  Google Scholar 

  11. Kaeffer N, Chavarot-Kerlidou M, Artero V (2015) Hydrogen evolution catalyzed by cobalt diimine-dioxime complexes. Acc Chem Res 48:1286–1295. https://doi.org/10.1021/acs.accounts.5b00058

    Article  CAS  Google Scholar 

  12. Khnayzer RS, Thoi VS, Nippe M et al (2014) Towards a comprehensive understanding of visible-light photogeneration of hydrogen from water using cobalt(ii) polypyridyl catalysts. Energy Environ Sci 7:1477. https://doi.org/10.1039/c3ee43982h

    Article  CAS  Google Scholar 

  13. Rodenberg A, Orazietti M, Probst B et al (2015) Mechanism of photocatalytic hydrogen generation by a polypyridyl-based cobalt catalyst in aqueous solution. Inorg Chem 54:646–657. https://doi.org/10.1021/ic502591a

    Article  CAS  Google Scholar 

  14. Vennampalli M, Liang G, Katta L et al (2014) Electronic effects on a mononuclear Co complex with a pentadentate ligand for catalytic H2 evolution. Inorg Chem 53:10094–10100. https://doi.org/10.1021/ic500840e

    Article  CAS  Google Scholar 

  15. Yang JY, Bullock RM, DuBois MR, DuBois DL (2011) Fast and efficient molecular electrocatalysts for H2 production: using hydrogenase enzymes as guides. MRS Bull 36:39–47. https://doi.org/10.1557/mrs.2010.8

    Article  CAS  Google Scholar 

  16. Pool DH, DuBois DL (2009) [Ni(PPh2NAr2)2(NCMe)][BF4]2 as an electrocatalyst for H2 production: PPh2NAr2 = 1,5-(di(4-(thiophene-3-yl)phenyl)-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane). J Organomet Chem 694:2858–2865. https://doi.org/10.1016/j.jorganchem.2009.04.010

    Article  CAS  Google Scholar 

  17. Seo J, Pekarek RT, Rose MJ (2015) Photoelectrochemical operation of a surface-bound, nickel-phosphine H2 evolution catalyst on p-Si(111): a molecular semiconductor catalyst construct. Chem Commun 51:4–7. https://doi.org/10.1039/C5CC02802G

    Google Scholar 

  18. Sun Y, Liu C, Grauer DC et al (2013) Electrodeposited cobalt-sulfide catalyst for electrochemical and photoelectrochemical hydrogen generation from water. J Am Chem Soc 135:17699–17702. https://doi.org/10.1021/ja4094764

    Article  CAS  Google Scholar 

  19. Kaeffer N, Morozan A, Fize J et al (2016) The dark side of molecular catalysis: diimine-dioxime cobalt complexes are not the actual hydrogen evolution electrocatalyst in acidic aqueous solutions. ACS Catal 6:3727–3737. https://doi.org/10.1021/acscatal.6b00378

    Article  CAS  Google Scholar 

  20. Anxolabéhère-Mallart E, Costentin C, Fournier M et al (2012) Boron-capped tris(glyoximato) cobalt clathrochelate as a precursor for the electrodeposition of nanoparticles catalyzing H2 evolution in water. J Am Chem Soc 134:6104–6107. https://doi.org/10.1021/ja301134e

    Article  Google Scholar 

  21. El Ghachtouli S, Fournier M, Cherdo S et al (2013) Monometallic cobalt-trisglyoximato complexes as precatalysts for catalytic H2 evolution in water. J Phys Chem C 117:17073–17077. https://doi.org/10.1021/jp405134a

    Article  Google Scholar 

  22. Anxolabéhère-Mallart E, Costentin C, Fournier M, Robert M (2014) Cobalt-bisglyoximato diphenyl complex as a precatalyst for electrocatalytic H2 evolution. J Phys Chem C 118:13377–13381. https://doi.org/10.1021/jp500813r

    Article  Google Scholar 

  23. El Ghachtouli S, Guillot R, Brisset F, Aukauloo A (2013) Cobalt-based particles formed upon electrocatalytic hydrogen production by a cobalt pyridine oxime complex. ChemSusChem 6:2226–2230. https://doi.org/10.1002/cssc.201300564

    Article  Google Scholar 

  24. Martin DJ, McCarthy BD, Donley CL, Dempsey JL (2014) Electrochemical hydrogenation of a homogeneous nickel complex to form a surface adsorbed hydrogen-evolving species. Chem Commun 51:2–5. https://doi.org/10.1039/c4cc08662g

    Google Scholar 

  25. Katoh T, Imamura G, Obata S, Saiki K (2016) Growth of N-doped graphene from nitrogen containing aromatic compounds: the effect of precursors on the doped site. RSC Adv 6:13392–13398. https://doi.org/10.1039/C5RA22664C

    Article  CAS  Google Scholar 

  26. Mulyana Y, Alley KG, Davies KM et al (2014) Dinuclear cobalt(II) and cobalt(III) complexes of bis-bidentate napthoquinone ligands. Dalton Trans 43:2499–2511. https://doi.org/10.1039/C3DT52811A

    Article  CAS  Google Scholar 

  27. Call A, Codolà Z, Acuña-Parés F, Lloret-Fillol J (2014) Photo- and electrocatalytic H2 production by new first-row transition-metal complexes based on an aminopyridine pentadentate ligand. Chem A Eur J 20:6171–6183. https://doi.org/10.1002/chem.201303317

    Article  CAS  Google Scholar 

  28. Fourmond V, Jacques P-A, Fontecave M, Artero V (2010) H2 evolution and molecular electrocatalysts: determination of overpotentials and effect of homoconjugation. Inorg Chem 49:10338–10347. https://doi.org/10.1021/ic101187v

    Article  CAS  Google Scholar 

  29. Ahn HS, Davenport TC, Tilley TD (2014) Molecular cobalt electrocatalyst for proton reduction at low overpotential. Chem Commun 50:3834–3837. https://doi.org/10.1039/c3cc49682a

    Article  CAS  Google Scholar 

  30. Wilson AD, Newell RH, McNevin MJ et al (2006) Hydrogen oxidation and production using nickel-based molecular catalysts with positioned proton relays. J Am Chem Soc 128:358–366. https://doi.org/10.1021/ja056442y

    Article  CAS  Google Scholar 

  31. Bigi JP, Hanna TE, Harman WH et al (2010) Electrocatalytic reduction of protons to hydrogen by a water-compatible cobalt polypyridyl platform. Chem Commun 46:958–960. https://doi.org/10.1039/B915846D

    Article  CAS  Google Scholar 

  32. Lin C-N, Zhou L-L, Fu L-Z et al (2015) Synthesis, structure and electrochemical properties of a cobalt(II) complex supported by 2-tetrahydrofurfurylamino-N,N-bis(2-methylene-4-tert-butyl-6-methyl)phenol. INOCHE 61:97–99. https://doi.org/10.1016/j.inoche.2015.08.017

    CAS  Google Scholar 

  33. MacDonald L, McGlynn JC, Irvine N et al (2017) Using earth abundant materials for the catalytic evolution of hydrogen from electron-coupled proton buffers. Sustain Energy Fuels 1:1782–1787. https://doi.org/10.1039/C7SE00334J

    Article  CAS  Google Scholar 

  34. Jurss JW, Concepcion JC, Norris MR et al (2010) Surface catalysis of water oxidation by the blue ruthenium dimer. Inorg Chem 49:3980–3982. https://doi.org/10.1021/ic100469x

    Article  CAS  Google Scholar 

  35. McCrory CCL, Uyeda C, Peters JC (2012) Electrocatalytic hydrogen evolution in acidic water with molecular cobalt tetraazamacrocycles. J Am Chem Soc 134:3164–3170. https://doi.org/10.1021/ja210661k

    Article  CAS  Google Scholar 

  36. Masa J, Weide P, Peeters D et al (2016) Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: oxygen and hydrogen evolution. Adv Energy Mater 6:1502313. https://doi.org/10.1002/aenm.201502313

    Article  Google Scholar 

  37. Liu X, Zheng H, Sun Z et al (2015) Earth-abundant copper-based bifunctional electrocatalyst for both catalytic hydrogen production and water oxidation. ACS Catal 5:1530–1538. https://doi.org/10.1021/cs501480s

    Article  CAS  Google Scholar 

  38. Zeng K, Zhang D (2010) Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci 36:307–326. https://doi.org/10.1016/j.pecs.2009.11.002

    Article  CAS  Google Scholar 

  39. Faber MS, Jin S (2014) Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ Sci 7:3519–3542. https://doi.org/10.1039/C4EE01760A

    Article  CAS  Google Scholar 

  40. Cobo S, Heidkamp J, Jacques P-A et al (2012) A Janus cobalt-based catalytic material for electro-splitting of water. Nat Mater 11:802–807. https://doi.org/10.1038/nmat3385

    Article  CAS  Google Scholar 

  41. Rioual S, Lescop B, Quentel F, Gloaguen F (2015) A molecular material based on electropolymerized cobalt macrocycles for electrocatalytic hydrogen evolution. Phys Chem Chem Phys 17:13374–13379. https://doi.org/10.1039/C5CP01210D

    Article  CAS  Google Scholar 

  42. Mclntyre NS, Cook MG (1975) X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper. Anal Chem 47:2208–2213. https://doi.org/10.1021/ac60363a034

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Science and Technology Council of Turkey, TUBITAK (Project No: 215Z249) for financial support. Emine Ülker thanks TUBITAK for support (Project No: 1929B011500059).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Emine Ülker or Ferdi Karadas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1298 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kap, Z., Ülker, E., Nune, S.V.K. et al. Electrocatalytic hydrogen evolution with cobalt–poly(4-vinylpyridine) metallopolymers. J Appl Electrochem 48, 201–209 (2018). https://doi.org/10.1007/s10800-018-1152-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-018-1152-z

Keywords

Navigation