Advertisement

Journal of Applied Electrochemistry

, Volume 49, Issue 3, pp 305–314 | Cite as

Preparation and properties of Co3O4-doped TiO2 nanotube array electrodes

  • Xiaoliu Wang
  • Jianling ZhaoEmail author
  • Tiantian Xiao
  • Zhongwei Li
  • Xixin WangEmail author
Research Article
Part of the following topical collections:
  1. Capacitors
  2. Capacitors

Abstract

Co3O4-doped TiO2 nanotube array electrodes were prepared by anodizing the Co–Ti alloys with different Co contents. Morphologies, elemental compositions, crystal structures, and electrochemical properties of the samples were characterized through scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and electrochemical workstation. The effects of Co content, annealing temperature and testing electrolyte on the electrochemical properties of the electrodes were studied. Results show that the areal capacitance values of TiO2 nanotube arrays were obviously improved by doping with Co3O4. The electrochemical properties of Co3O4-doped TiO2 nanotube array electrodes were best when the Co content in the alloys was 9%; the annealing temperature was 100 °C and the testing electrolyte was 0.5 M Na2SO4. The Co3O4-doped TiO2 nanotube array electrodes prepared under the optimal conditions had a high areal capacitance value of 937.9 µF cm−2 when the scan rate was 10 mV s−1 and the electrodes exhibited good rate and superior cycling performance.

Graphical abstract

Keywords

Co–Ti alloys Anodization Co3O4 TiO2 nanotube arrays Electrochemical properties 

Notes

Acknowledgements

This work is supported by The National Natural Science Foundation of China (No. 51272064) and The Key Basic Research Programme of Hebei Province of China (No. 17964401D).

References

  1. 1.
    Wu LQ, Hao LH, Pang BW, Wang GF, Zhang Y, Li XH (2017) MnO2 nanoflowers and polyaniline nanoribbons grown on hybrid graphene/Ni 3D scaffolds by in situ electrochemical techniques for high-performance asymmetric supercapacitors. J Mater Chem A 5(9):4629–4637.  https://doi.org/10.1039/C6TA10757E Google Scholar
  2. 2.
    Zhang XH, Zhang K, Li HX, Wang Q, Jin LE, Cao Q (2018) Synthesis of porous graphitic carbon from biomass by one-step method and its role in the electrode for supercapacitor. J Appl Electrochem 48(4):415–426.  https://doi.org/10.1007/s10800-018-1170-x Google Scholar
  3. 3.
    Shao Z, Li HJ, Li MJ, Li CP, Qu CQ, Yang BH (2015) Fabrication of polyaniline nanowire/TiO2 nanotube array electrode for supercapacitors. Energy 87:578–585.  https://doi.org/10.1016/j.energy.2015.05.025 Google Scholar
  4. 4.
    Yao YC, Zhang Q, Liu P, Yu L, Huang L, Zeng SZ, Liu LJ, Zeng XR, Zou JZ (2018) Facile synthesis of high-surface-area nanoporous carbon from biomass resources and its application in supercapacitors. RSC Adv 8(4):1857–1865.  https://doi.org/10.1039/c7ra12525a Google Scholar
  5. 5.
    Deng W, Lan W, Sun Y, Sun Q, Xie E (2014) Porous CoO nanostructures grown on three-dimension graphene foams for supercapacitors electrodes. Appl Surf Sci 305:433–438.  https://doi.org/10.1016/j.apsusc.2014.03.107 Google Scholar
  6. 6.
    Song YY, Li YH, Guo J, Gao ZD, Li Y (2015) Facile method to synthesize a carbon layer embedded into titanium dioxide nanotubes with metal oxide decoration for electrochemical applications. J Mater Chem A 3(47):23754–23759.  https://doi.org/10.1039/c5ta05691h Google Scholar
  7. 7.
    Huang ZH, Song Y, Feng DY, Sun Z, Sun XQ, Liu XX (2018) High mass loading MnO2 with hierarchical nanostructures for supercapacitors. ACS Nano 12(4):3557–3567.  https://doi.org/10.1021/acsnano.8b00621 Google Scholar
  8. 8.
    Hu H, Guan BY, Xia BY, Lou XW (2015) Designed formation of Co3O4/NiCo2O4 double-shelled nanocages with enhanced pseudocapacitive and electrocatalytic properties. J Am Chem Soc 137(16):5590–5595.  https://doi.org/10.1021/jacs.5b02465 Google Scholar
  9. 9.
    Mirzaee M, Dehghanian C, Sarbishei S (2018) Facile synthesis of nano dendrite-structured Ni-NiO foam/ERGO by constant current method for supercapacitor applications. J Appl Electrochem 48(8):1–13.  https://doi.org/10.1007/s10800-018-1229-8 Google Scholar
  10. 10.
    Li H, He J, Cao X, Kang LP, He XX, Xu H, Shi F, Jiang RB, Lei ZB, Liu ZH (2017) All solid-state V2O5-based flexible hybrid fiber supercapacitors. J Power Sources 371:18–25.  https://doi.org/10.1016/j.jpowsour.2017.10.031 Google Scholar
  11. 11.
    Wang XZ, Xiao YH, Su DC, Xu SG, Zhou LM, Wu SD, Han LF, Fang SM, Cao SK (2016) Hierarchical porous cobalt monoxide nanosheet@ultrathin manganese dioxide nanosheet core-shell arrays for high-performance asymmetric supercapacitor. Int J Hydrogen Energy 41(31):13540–13548.  https://doi.org/10.1016/j.ijhydene.2016.06.133 Google Scholar
  12. 12.
    Deori K, Ujjain SK, Sharma RK, Deka S (2013) Morphology controlled synthesis of nanoporous Co3O4 nanostructures and their charge storage characteristics in supercapacitors. ACS Appl Mater Interfaces 5(21):10665–10672.  https://doi.org/10.1021/am4027482 Google Scholar
  13. 13.
    Zhang F, Yuan CZ, Zhu JJ, Wang J, Zhang XG, Lou XW (2013) Flexible films derived from electrospun carbon nanofibers incorporated with Co3O4 hollow nanoparticles as self-supported electrodes for electrochemical capacitors. Adv Funct Mater 23(31):3909–3915.  https://doi.org/10.1002/adfm.201203844 Google Scholar
  14. 14.
    Rakhi RB, Chen W, Hedhili MN, Cha D, Alshareef HN (2014) Enhanced rate performance of mesoporous Co3O4 nanosheet supercapacitor electrodes by hydrous RuO2 nanoparticle decoration. ACS Appl Mater Interfaces 6(6):4196–4206.  https://doi.org/10.1021/am405849n Google Scholar
  15. 15.
    Li YH, Huang KL, Zeng DM, Liu SQ, Yao ZF (2010) RuO2/Co3O4 thin films prepared by spray pyrolysis technique for supercapacitors. J Solid State Electrochem 14(7):1205–1211.  https://doi.org/10.1007/s10008-009-0955-6 Google Scholar
  16. 16.
    Liu T, Zhang LY, You W, Yu JG (2018) Core-shell nitrogen-doped carbon hollow spheres/Co3O4 nanosheets as advanced electrode for high-performance supercapacitor. Small 14(12):1702407.  https://doi.org/10.1002/smll.201702407 Google Scholar
  17. 17.
    Zhou XM, Shen XT, Xia ZM, Zhang ZY, Li J, Ma YY, Qu YQ (2015) Hollow fluffy Co3O4 cages as efficient electroactive materials for supercapacitors and oxygen evolution reaction. ACS Appl Mater Interfaces 7(36):20322–20331.  https://doi.org/10.1021/acsami.5b05989 Google Scholar
  18. 18.
    Abouali S, Garakani MA, Zhang B, Xu ZL, Heidari EK, Huang JQ, Huang JQ, Kim JQ (2015) Electrospun carbon nanofibers with in situ encapsulated Co3O4 nanoparticles as electrodes for high-performance supercapacitors. ACS Appl Mater Interfaces 7(24):13503–13511.  https://doi.org/10.1021/acsami.5b02787 Google Scholar
  19. 19.
    Cheng GH, Si CH, Zhang J, Wang Y, Yang WF, Dong CQ, Zhang ZH (2016) Facile fabrication of cobalt oxalate nanostructures with superior specific capacitance and super-long cycling stability. J Power Sources 312:184–191.  https://doi.org/10.1016/j.jpowsour.2016.02.046 Google Scholar
  20. 20.
    Kong SY, Yang F, Cheng K, OuYang T, Ye K, Wang GL, Gao DX (2017) In-situ growth of cobalt oxide nanoflakes from cobalt nanosheet on nickel foam for battery-type supercapacitors with high specific capacity. J Electroanal Chem 785:103–108.  https://doi.org/10.1016/j.jelechem.2016.12.002 Google Scholar
  21. 21.
    Qorbani M, Chou TC, Lee YH, Samireddi S, Naseri N, Ganguly A, Esfandiar A, Wang CH, Chen LC, Chen KH, Moshfegh Z A (2017) Multi-porous Co3O4 nanoflakes@sponge-like few layer partially reduced graphene oxide hybrids: towards highly stable asymmetric supercapacitors. J Mater Chem A 5(24):12569–12577.  https://doi.org/10.1039/c7ta00694b Google Scholar
  22. 22.
    Wang JY, Dou W, Zhang XT, Han WH, Mu XM, Zhang Y, Zhao XH, Chen YX, Yang ZW, Su Q, Xie E, Lan W, Wang XR (2017) Embedded Ag quantum dots into interconnected Co3O4 nanosheets grown on 3D graphene networks for high stable and flexible supercapacitors. Electrochim Acta 224:260–268.  https://doi.org/10.1016/j.electacta.2016.12.073 Google Scholar
  23. 23.
    Zhang H, Zhou YY, Ma YB, Yao JR, Li X, Sun YY, Xiong ZY, Li D (2018) RF magnetron sputtering synthesis of three-dimensional graphene@Co3O4 nanowire array grown on Ni foam for application in supercapacitors. J Alloys Compd 740:174–179.  https://doi.org/10.1016/j.jallcom.2018.01.006 Google Scholar
  24. 24.
    Gao ZY, Chen C, Chang JL, Chen LM, Wu DP, Xu F, Jiang K (2018) Balanced energy density and power density: asymmetric supercapacitor based on activated fullerene carbon soot anode and graphene-Co3O4 composite cathode. Electrochim Acta 260:932–943.  https://doi.org/10.1016/j.electacta.2017.12.070 Google Scholar
  25. 25.
    Zou YJ, Cai CL, Xiang CL, Huang PR, Chu HL, She Z, Xu F, Sun LX, Kraatz HB (2018) Simple synthesis of core-shell structure of Co-Co3O4@carbon-nanotube-incorporated nitrogen-doped carbon for high-performance supercapacitor. Electrochim Acta 261:537–547.  https://doi.org/10.1016/j.electacta.2017.12.184 Google Scholar
  26. 26.
    Yu CP, Wang Y, Cui JW, Liu JQ, Wu YC (2017) Recent advances in the multi-modification of TiO2 nanotube arrays and their application in supercapacitors. Acta Phys Chim Sin 33(10):1944–1959.  https://doi.org/10.3866/PKU.WHXB201705177 Google Scholar
  27. 27.
    Huang YG, Zhang XH, Chen XB, Wang HQ, Chen JR, Zhong XX, Li QY (2015) Electrochemical properties of MnO2-deposited TiO2 nanotube arrays 3D composite electrode for supercapacitors. Int J Hydrogen Energy 40(41):14331–14337.  https://doi.org/10.1016/j.ijhydene.2015.05.014 Google Scholar
  28. 28.
    Sarma B, Jurovitzki AL, Smith YR, Mohanty SK, Misra M (2013) Redox-induced enhancement in interfacial capacitance of the titania nanotube/bismuth oxide composite electrode. ACS Appl Mater Interfaces 5(5):1688–1697.  https://doi.org/10.1021/am302738r Google Scholar
  29. 29.
    Mohajernia S, Hejazi S, Mazare A, Nguyen NT, Hwang I, Kment S, Zoppellaro G, Tomanec O, Zboril R, Schmuki P (2017) Semimetallic core-shell TiO2 nanotubes as a high conductivity scaffold and use in efficient 3D-RuO2 supercapacitors. Mater Today Energy 6:46–52.  https://doi.org/10.1016/j.mtener.2017.08.001 Google Scholar
  30. 30.
    Cui LH, Wang Y, Shu X, Zhang JF, Yu CP, Cui JW, Zheng HM, Zhang Y, Wu YC (2016) Supercapacitive performance of hydrogenated TiO2 nanotube arrays decorated with nickel oxides nanoparticles. RSC Adv 6(15):12185–12192.  https://doi.org/10.1039/c5ra25581c Google Scholar
  31. 31.
    Yu CP, Wang Y, Zheng HM, Zhang JF, Yang WF, Shu X, Qin YQ, Cui JW, Zhang Y, Wu YC (2017) Supercapacitive performance of homogeneous Co3O4/TiO2 nanotube arrays enhanced by carbon layer and oxygen vacancies. J Solid State Electrochem 21(4):1069–1078.  https://doi.org/10.1007/s10008-016-3441-y Google Scholar
  32. 32.
    Huang B, Yang WJ, Wen YW, Shan B, Chen R (2014) Co3O4-modified TiO2 nanotube arrays via atomic layer deposition for improved visible-light photoelectrochemical performance. ACS Appl Mater Interfaces 7:422–431.  https://doi.org/10.1021/am506392y Google Scholar
  33. 33.
    Yang Y, Li CK, Liu YY, Sun K, Yu HT, Guo JH, Liou SYH, Hoffmann R M (2018) Cobalt-soped black TiO2 banotube array as a stable anode for oxygen evolution and electrochemical wastewater treatment. ACS Catal 8:4278–4287.  https://doi.org/10.1021/acscatal.7b04340 Google Scholar
  34. 34.
    Fan YQ, Zhang N, Zhang LY, Shao HB, Wang JM, Zhang JQ, Cao CN (2013) Co3O4-coated TiO2 nanotube composites synthesized through photo-deposition strategy with enhanced performance for lithium-ion batteries. Electrochim Acta 94:285–293.  https://doi.org/10.1016/j.electacta.2013.01.114 Google Scholar
  35. 35.
    Zhuo YQ, Ling YH, Huang L (2012) Discharge relaxation of TiO2-WO3 composite nanotube arrays. Key Eng Mater 492:304–307.  https://doi.org/10.4028/www.scientific.net/KEM.492.304 Google Scholar
  36. 36.
    Wang ML, Wang XX, Lin J, Ning XW, Yang XJ, Zhang XH, Zhao JL (2015) Preparation and photoluminescence properties of Eu3+-doped ZrO2 nanotube arrays. Ceram Int 41(7):8444–8450.  https://doi.org/10.1016/j.ceramint.2015.03.046 Google Scholar
  37. 37.
    Li MF, Zhao GH, Li PQ, Zhang YN, Wu WF (2012) Photoelectrocatalytic properties of a vertically aligned Ti-W alloy oxide nanotubes array and its applications in dye wastewater degradation. Environ Technol 33(2):191–199.  https://doi.org/10.1080/09593330.2011.556150 Google Scholar
  38. 38.
    Guo M, Zhao JL, Xu XR, Yu W, Wang XX (2013) Preparation of Fe-doped ZrO2 nanotube arrays by anodization of Zr-Fe alloy and their magnetic properties. Mater Lett 111:93–96.  https://doi.org/10.1016/j.matlet.2013.08.060 Google Scholar
  39. 39.
    Kim JH, Zhu K, Yan YF, Perkins CL, Frank AJ (2010) Microstructure and pseudocapacitive properties of electrodes constructed of oriented NiO-TiO2 nanotube arrays. Nano Lett 10(10):4099–4104.  https://doi.org/10.1021/nl102203s Google Scholar
  40. 40.
    Yang Y, Kim D, Yang M, Schmuki P (2011) Vertically aligned mixed V2O5-TiO2 nanotube arrays for supercapacitor applications. Chem Commun 47(27):7746–7748.  https://doi.org/10.1039/c1cc11811k Google Scholar
  41. 41.
    Ning XW, Wang XX, Yu XF, Li JX, Zhao JL (2016) Preparation and capacitance properties of Mn-doped TiO2 nanotube arrays by anodisation of Ti-Mn alloy. J Alloys Compd 658:177–182.  https://doi.org/10.1016/j.jallcom.2015.10.204 Google Scholar
  42. 42.
    Ramadoss A, Kim SJ (2014) Hierarchically structured TiO2@MnO2 nanowall arrays as potential electrode material for high performance supercapacitors. Int J Hydrogen Energy 39(23):12201–12212.  https://doi.org/10.1016/j.ijhydene.2014.05.118 Google Scholar
  43. 43.
    Ren XH, Fan HQ, Ma JW, Wang C, Zhang MC, Zhao N (2018) Hierarchical Co3O4/PANI hollow nanocages: synthesis and application for electrode materials of supercapacitors. Appl Surf Sci 441:194–203.  https://doi.org/10.1016/j.apsusc.2018.02.013 Google Scholar
  44. 44.
    Lu SH, Wang F, Chen CC, Huang FL, Li KL (2017) Catalytic oxidation of formaldehyde over CeO2-Co3O4 catalysts. J Rare Earths 35(9):867–874.  https://doi.org/10.1016/S1002-0721(17)60988-8 Google Scholar
  45. 45.
    Zhu H, Li K, Chen ML, Wang FH (2017) A melamine formaldehyderesin route to in situ encapsulate Co2O3 into carbon black for enhanced oxygen reduction in alkaline media. Int J Hydrogen Energy 42(41):25960–25968.  https://doi.org/10.1016/j.ijhydene.2017.08.179 Google Scholar
  46. 46.
    Xiao JW, Kuang Q, Yang SH, Xiao F, Wang SA, Guo L (2013) Surface structure dependent electrocatalytic activity of Co3O4 anchored on graphene sheets toward oxygen reduction reaction. Sci Rep 3:2300.  https://doi.org/10.1038/srep02300 Google Scholar
  47. 47.
    Cao YY, Liu CB, Qian JC, Chen ZG, Chen F (2017) Novel 3D porous graphene decorated with Co3O4/CeO2 for high performance supercapacitor power cell. J Rare Earths 35:995–1001.  https://doi.org/10.1016/S1002-0721(17)61004-4 Google Scholar
  48. 48.
    Wu H, Li DD, Zhu XF, Yang CY, Liu DF, Chen XY, Song Y, Lu LF (2014) High-performance and renewable supercapacitors based on TiO2 nanotube array electrodes treated by an electrochemical doping approach. Electrochim Acta 116:129–136.  https://doi.org/10.1016/j.electacta.2013.10.092 Google Scholar
  49. 49.
    Fan XZ, Lu YH, Xu HB, Kong XF, Wang J (2011) Reversible redox reaction on the oxygen-containing functional groups of an electrochemically modified graphite electrode for the pseudo-capacitance. J Mater Chem 21(46):18753–18760.  https://doi.org/10.1039/c1jm13214h Google Scholar
  50. 50.
    Sun YY, Zhang WH, Li DS, Gao L, Hou CL, Zhang YH, Liu YQ (2015) Facile synthesis of MnO2/rGO/Ni composite foam with excellent pseudocapacitive behavior for supercapacitors. J Alloys Compd 649:579–584.  https://doi.org/10.1016/j.jallcom.2015.07.212 Google Scholar
  51. 51.
    Kazazi M, Sedighi AR, Mokhtari MA (2018) Pseudocapacitive performance of electrodeposited porous Co3O4 film on electrophoretically modified graphite electrodes with carbon nanotubes. Appl Surf Sci 441:251–257.  https://doi.org/10.1016/j.apsusc.2018.02.054 Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringHebei University of TechnologyTianjinChina

Personalised recommendations