Journal of Applied Electrochemistry

, Volume 49, Issue 3, pp 281–290 | Cite as

Graphene–carbon nanotube hybrid catalyst layer architecture for reversible oxygen electrodes in rechargeable metal–air batteries

  • Miguel A. Garcia-Contreras
  • Pooya Hosseini-Benhangi
  • Előd L. GyengeEmail author
Research Article
Part of the following topical collections:
  1. Batteries
  2. Batteries


Reversible oxygen reduction/evolution reaction (ORR/OER) electrodes with non-precious metal catalysts are essential for the larger scale development of rechargeable metal–air batteries and regenerative fuel cells. Here, an investigation of the catalyst layer morphology is presented with respect to the bifunctional ORR/OER activity and durability of MnO2–LaCoO3 catalyst in 6 M KOH. Graphene, N-doped graphene and multi-walled carbon nanotubes (MWCNT), alone and in combination, were studied as catalyst layer support. The graphene and N-doped graphene microsheets were prepared by ionic liquid-assisted electrochemical exfoliation of graphite. It was found that the hybrid support composed of graphene and MWCNT (1:1 wt) generated up to an order of magnitude higher ORR and OER current densities for MnO2–LaCoO3, compared to either graphene or MWCNT supports individually. The 3D scaffold-like architecture of the graphene microsheets and MWCNT pillars enhances the catalyst layer utilization efficiency and also improves the catalyst anchoring. The latter effects, together with the lower rates of carbon corrosion in the OER region and peroxide generation in the ORR region on the graphene-based supports compared to the reference Vulcan XC-72, contribute to the improved activity of the hybrid catalyst layer as demonstrated using accelerated potential deep cycle experiments.

Graphical abstract


Oxygen reduction and evolution reactions Electrocatalysis Catalyst support Non-precious metal catalyst 



The electron microscopy research described in this paper was performed at Bioimaging Facility at University of British Columbia (UBC). We would like to also thank Derrick Horne and Bradford Ross from the Bioimaging Facility for FESEM as well as TEM trainings and Anita Lam from Department of Chemistry, the University of British Columbia (UBC) for XRD analysis.


This research was performed by the financial support of NSERC (Natural Sciences and Engineering Research Council) of Canada under the Discovery Grant program.

Supplementary material

10800_2018_1280_MOESM1_ESM.docx (346 kb)
Supplementary material 1 (DOCX 345 KB)


  1. 1.
    Lee J, Jeong B, Ocon JD (2013) Curr Appl Phys 13:309CrossRefGoogle Scholar
  2. 2.
    Ludwig J (2006) J Power Sources 155:23CrossRefGoogle Scholar
  3. 3.
    Grdeń M, Alsabet M, Jerkiewicz G (2012) ACS Appl Mater Interfaces 4:3012CrossRefGoogle Scholar
  4. 4.
    Benhangi PH, Alfantazi A, Gyenge E (2014) Electrochim Acta 123:42CrossRefGoogle Scholar
  5. 5.
    Stern L-A, Hu X (2014) Faraday Discuss 176:363CrossRefGoogle Scholar
  6. 6.
    Serov A, Aziznia A, Benhangi PH et al (2013) J Mater Chem A 1:14384CrossRefGoogle Scholar
  7. 7.
    Blizanac BB, Ross PN, Marković NM (2006) J Phys Chem B 110:4735CrossRefGoogle Scholar
  8. 8.
    Lee WH, Kim H (2011) Catal Commun 12:408CrossRefGoogle Scholar
  9. 9.
    Gorlin Y, Jaramillo TF (2010) J Am Chem Soc 132:13612CrossRefGoogle Scholar
  10. 10.
    Lee Y, Suntivich J, May KJ et al (2012) J Phys Chem Lett 3:399CrossRefGoogle Scholar
  11. 11.
    Marković NM, Ross PN (1994) J Electrochem Soc 141:2590CrossRefGoogle Scholar
  12. 12.
    Pickrahn KL, Park SW, Gorlin Y et al (2012) Adv Energy Mater 2:1269CrossRefGoogle Scholar
  13. 13.
    Jaouen F, Proietti E, Lefevre M et al (2011) Energy Environ Sci 4:114CrossRefGoogle Scholar
  14. 14.
    Cheng F, Chen J (2012) Chem Soc Rev 41:2172CrossRefGoogle Scholar
  15. 15.
    Gutsche C, Moeller CJ, Knipper M et al (2016) J Phys Chem C 120:1137CrossRefGoogle Scholar
  16. 16.
    Ahmed J, Mao Y (2016) Electrochim Acta 212:686CrossRefGoogle Scholar
  17. 17.
    Shao M, Chang Q, Dodelet J-P, Chenitz R (2016) Chem Rev 116:3594CrossRefGoogle Scholar
  18. 18.
    Sahraie NR, Kramm UI, Steinberg J et al (2015) Nat Commun 6:8618CrossRefGoogle Scholar
  19. 19.
    Zhan Y, Lu M, Yang S et al (2016) ChemCatChem 8:372CrossRefGoogle Scholar
  20. 20.
    Chabre Y, Pannetier J (1995) Prog Solid State Ch 23:1CrossRefGoogle Scholar
  21. 21.
    Gyenge EL, Drillet J-F (2012) J Electrochem Soc 159:F23CrossRefGoogle Scholar
  22. 22.
    Gorlin Y, Lassalle-Kaiser B, Benck JD et al (2013) J Am Chem Soc 135:8525CrossRefGoogle Scholar
  23. 23.
    Stoerzinger KA, Risch M, Han B, Shao-Horn Y (2015) ACS Catal 5:6021CrossRefGoogle Scholar
  24. 24.
    Bockris JO, Otagawa T (1983) J Phys Chem 87:2960CrossRefGoogle Scholar
  25. 25.
    Bockris JOM, Otagawa T (1984) J Electrochem Soc 131:290CrossRefGoogle Scholar
  26. 26.
    Bockris JOM, Otagawa T, Young V (1983) J Electroanal Chem 150:633CrossRefGoogle Scholar
  27. 27.
    Suntivich J, May KJ, Gasteiger HA et al (2011) Science 334:1383CrossRefGoogle Scholar
  28. 28.
    Cao R, Lee J-S, Liu M, Cho J (2012) Adv Energy Mater 2:816CrossRefGoogle Scholar
  29. 29.
    Lu ZY, Wang HT, Kong DS et al (2014) Nat Commun 5:4345CrossRefGoogle Scholar
  30. 30.
    Lang X, Hirata A, Fujita T, Chen M (2011) Nat Nano 6:232CrossRefGoogle Scholar
  31. 31.
    Rogers DB, Shannon RD, Sleight AW, Gillson JL (1969) Inorg Chem 8:841CrossRefGoogle Scholar
  32. 32.
    Gupta S, Kellogg W, Xu H et al (2016) Chem—An Asian J 11:10CrossRefGoogle Scholar
  33. 33.
    Hardin WG, Slanac DA, Wang X et al (2013) J Phys Chem Lett 4:1254CrossRefGoogle Scholar
  34. 34.
    Dehkhoda AM, Ellis N, Gyenge E (2014) J Appl Electrochem 44:141CrossRefGoogle Scholar
  35. 35.
    Shao Y, Liu J, Wang Y, Lin Y (2009) J Mater Chem 19:46CrossRefGoogle Scholar
  36. 36.
    Banham D, Feng F, Fürstenhaupt T et al (2011) J Power Sources 196:5438CrossRefGoogle Scholar
  37. 37.
    Ng JWD, Tang M, Jaramillo TF (2014) Energy Environm Sci 7: 2017CrossRefGoogle Scholar
  38. 38.
    Müller S, Striebel K, Haas O (1994) Electrochim Acta 39:1661CrossRefGoogle Scholar
  39. 39.
    Ross PN, Sattler M (1988) J Electrochem Soc 135:1464CrossRefGoogle Scholar
  40. 40.
    Pettersson J, Ramsey B, Harrison D (2006) J Power Sources 157:28CrossRefGoogle Scholar
  41. 41.
    Ross PN, Sokol H (1984) J Electrochem Soc 131:1742CrossRefGoogle Scholar
  42. 42.
    Staud N, Ross PN (1986) J Electrochem Soc 133:1079CrossRefGoogle Scholar
  43. 43.
    Ge X, Sumboja A, Wuu D et al (2015) ACS Catal 5:4643CrossRefGoogle Scholar
  44. 44.
    Zhang J, Zhao Z, Xia Z, Dai L (2015) Nat Nanotechnol 10:444CrossRefGoogle Scholar
  45. 45.
    Bao X, von Deak D, Biddinger EJ et al (2010) Chem Commun 46:8621CrossRefGoogle Scholar
  46. 46.
    Choi CH, Park SH, Woo SI (2011) Green Chem 13:406CrossRefGoogle Scholar
  47. 47.
    Zhang S, Shao Y, Yin G, Lin Y (2010) J Mater Chem 20:2826CrossRefGoogle Scholar
  48. 48.
    Liu R, Li S, Yu X et al (2011) J Mater Chem 21:14917CrossRefGoogle Scholar
  49. 49.
    Fujigaya T, Uchinoumi T, Kaneko K, Nakashima N (2011) Chem Commun 47:6843CrossRefGoogle Scholar
  50. 50.
    Li Y, Dai H (2014) Chem Soc Rev 43:5257CrossRefGoogle Scholar
  51. 51.
    Ye D, Wu T, Cao H et al (2015) RSC Adv 5:26710CrossRefGoogle Scholar
  52. 52.
    Najafabadi AT, Gyenge E (2014) Carbon 71:58CrossRefGoogle Scholar
  53. 53.
    Taheri Najafabadi A, Gyenge E (2015) Carbon 84:449CrossRefGoogle Scholar
  54. 54.
    Gyenge E, Hosseini-Benhangi P (Filed on August 30, 2016) An oxygen electrode and a method of manufacturing the same. U.S. (15/251,267) and Canadian (2,940,921) patent applicationsGoogle Scholar
  55. 55.
    Hosseini-Benhangi P, Garcia-Contreras MA, Alfantazi A, Gyenge EL (2015) J Electrochem Soc 162:F1356CrossRefGoogle Scholar
  56. 56.
    Tian M, Cousins C, Beauchemin D et al (2016) ACS Catal 6:5108CrossRefGoogle Scholar
  57. 57.
    Vielstich WL, A; Gasteiger, Hubert A (eds) (2003) Fuel cell electrocatalysis. Handbook of fuel cells: fundamentals, technology, and applications. Wiley, New JerseyGoogle Scholar
  58. 58.
    Lima FHB, Calegaro ML, Ticianelli EA (2006) J Electroanal Chem 590:152CrossRefGoogle Scholar
  59. 59.
    Lima FHB, Calegaro ML, Ticianelli EA (2007) Electrochim Acta 52:3732CrossRefGoogle Scholar
  60. 60.
    Li X, Qu W, Zhang J, Wang H (2011) J Electrochem Soc 158:A597CrossRefGoogle Scholar
  61. 61.
    Sunarso J, Torriero AAJ, Zhou W et al (2012) J Phys Chem C 116:5827CrossRefGoogle Scholar
  62. 62.
    Jiang J, Yi B (2005) J Electroanal Chem 577:107CrossRefGoogle Scholar
  63. 63.
    Tian G-L, Zhao M-Q, Yu D et al (2014) Small 10:2251CrossRefGoogle Scholar
  64. 64.
    Wang Z-L, Xu D, Xu J-J, Zhang X-B (2014) Chem Soc Rev 43:7746CrossRefGoogle Scholar
  65. 65.
    Bao X, Nie X, von Deak D et al (2013) Top Catal 56:1623CrossRefGoogle Scholar
  66. 66.
    Vazquez-Arenas J, Galano A, Lee DU et al (2016) J Mater Chem A 4:976CrossRefGoogle Scholar
  67. 67.
    Hosseini-Benhangi P, Alfantazi A, Gyenge E (2014) Electrochim Acta 123:42CrossRefGoogle Scholar
  68. 68.
    Hosseini-Benhangi P, Kung CH, Alfantazi A, Gyenge EL (2017) ACS Appl Mater Interfaces 9:26771CrossRefGoogle Scholar
  69. 69.
    Najafabadi AT, Leeuwner MJ, Wilkinson DP, Gyenge EL (2016) ChemSusChem 9:1689CrossRefGoogle Scholar
  70. 70.
    Man IC, Su H-Y, Calle-Vallejo F et al (2011) ChemCatChem 3:1159CrossRefGoogle Scholar
  71. 71.
    Koper MTM (2011) J Electroanal Chem 660:254CrossRefGoogle Scholar
  72. 72.
    Su H-Y, Gorlin Y, Man IC et al (2012) Phys Chem Chem Phys 14:14010CrossRefGoogle Scholar
  73. 73.
    Zhang J, Xia Z, Dai L (2015) Sci Adv 1:e1500564CrossRefGoogle Scholar
  74. 74.
    Jiao Y, Zheng Y, Jaroniec M, Qiao SZ (2014) J Am Chem Soc 136:4394CrossRefGoogle Scholar
  75. 75.
    Li M, Zhang L, Xu Q et al (2014) J Catal 314:66CrossRefGoogle Scholar
  76. 76.
    Gao Q, Ranjan C, Pavlovic Z et al (2015) ACS Catal 5:7265CrossRefGoogle Scholar
  77. 77.
    Kozawa A, Kalnoki-Kis T, Yeager JF (1966) J Electrochem Soc 113:405CrossRefGoogle Scholar
  78. 78.
    Ruetschi P (1976) J Electrochem Soc 123:495CrossRefGoogle Scholar
  79. 79.
    Chen C-F, King G, Dickerson RM et al (2015) Nano Energy 13:423CrossRefGoogle Scholar
  80. 80.
    May KJ, Carlton CE, Stoerzinger KA et al (2012) J Phys Chem Lett 3:3264CrossRefGoogle Scholar
  81. 81.
    Li L, Feng X, Nie Y et al (2015) ACS Catal 5:4825CrossRefGoogle Scholar
  82. 82.
    Suntivich J, Gasteiger HA, Yabuuchi N et al (2011) Nat Chem 3:546CrossRefGoogle Scholar
  83. 83.
    Mueller DN, Machala ML, Bluhm H, Chueh WC (2015) Nat Commun 6:6097CrossRefGoogle Scholar
  84. 84.
    Poux T, Napolskiy FS, Dintzer T et al (2012) Catal Today 189:83CrossRefGoogle Scholar
  85. 85.
    Hong WT, Risch M, Stoerzinger KA et al (2015) Energy Environ Sci 8:1404CrossRefGoogle Scholar
  86. 86.
    Jung S, McCrory CCL, Ferrer IM et al (2016) J Mater Chem A 4:3068CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Chemical and Biological Engineering & Clean Energy Research Center (CERC)The University of British ColumbiaVancouverCanada
  2. 2.Department of ChemistryNational Institute of Nuclear ResearchLa Marquesa OcoyoacacMexico
  3. 3.Department of Materials EngineeringThe University of British ColumbiaVancouverCanada

Personalised recommendations