Skip to main content
Log in

Surface enhanced Raman spectroscopy measurement of surface pH at the electrode during Ni electrodeposition reaction

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, we developed a precise approach to analyze local proton concentration at the solid/liquid interface of electrodes, i.e. “surface pH”, during electrochemical reactions. For this, surface enhanced Raman spectroscopy (SERS) was applied to analyze pH-dependent structural changes of the –COOH group of p-mercaptobenzoic acid (p-MBA) modified onto Au nanoparticles (NPs) on the substrate close to a working electrode. Measurements using this system identified deprotonation of –COOH of p-MBA. Since preliminary experiments and density functional theory calculations suggest that the pKa of p-MBA attached to Au NPs is close to that in bulk solution, the SERS results indicate pH increase due to proton consumption by the cathodic overpotential of the working electrode. As an example, we applied this system to surface pH monitoring in electrodeposition process of Ni in an acidic bath, which indicated the validity of our method for precise detection of pH changes at electrode interfaces in situ.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dahms H, Croll IM (1965) The anomalous codeposition of iron-nickel alloys. J Electrochem Soc 112:771–775

    Article  CAS  Google Scholar 

  2. Wei C, Bard AJ, Nagy G, Toth K (1995) Scanning electrochemical microscopy. 28. Ion–selective neutral carrier-based microelectrode potentiometry. Anal Chem 67:1346–1356

    Article  CAS  Google Scholar 

  3. Park JO, Paik CH, Alkire RC (1996) Scanning microsensors for measurement of local pH distributions at the microscale. J Electrochem Soc 143(8):L174–L176

    Article  CAS  Google Scholar 

  4. Klushmann E, Schultze JW (1997) pH-microscopy: theoretical and experimental investigations. Electrochim Acta 42:3123–3134

    Article  Google Scholar 

  5. Romankiw LT (1970) Specific ion activity measurement at an electrode during electrolysis. IBM Tech Discl Bull 13:69

    Google Scholar 

  6. Deligianni H, Romankiw LT (1993) In situ surface pH measurement during electrolysis using a rotating pH electrode. IBM J Res Dev 37(2):85–95

    Article  CAS  Google Scholar 

  7. Diaz SL, Mattos OR, Barcia OE, Miranda FJF (2002) ZnFe anomalous electrodeposition: stationaries and local pH measurements. Electrochim Acta 47:4091–4100

    Article  CAS  Google Scholar 

  8. Koza JA, Uhlemann M, Gebert A, Schultz L (2008) The effect of a magnetic field on the pH value in front of the electrode surface during the electrodeposition of Co, Fe and CoFe alloys. J Electroanal Chem 617:194–202

    Article  CAS  Google Scholar 

  9. Hessami S, Tobias CW (1993) In-situ measurement of interfacial pH using a rotating ring-disk electrode. AIChE J 39(1):149–162

    Article  CAS  Google Scholar 

  10. Nakao M, Yoshinobu T, Iwasaki H (1994) Improvement of spatial resolution of a laser-scanning ph-imaging sensor. Jpn J Appl Phys 33:L394–L397

    Article  CAS  Google Scholar 

  11. Han J, Brown BN, Young D, Nesic S (2010) Mesh-capped probe design for direct pH measurements at an actively corroding metal surface. J Appl Electrochem 40:683–690

    Article  CAS  Google Scholar 

  12. Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1999) Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev 99:2957–2975

    Article  CAS  Google Scholar 

  13. Ueno K, Juodkazis S, Shibuya T, Yokota Y, Mizeikis V, Sasaki K, Misawa H (2008) Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source. J Am Chem Soc 130:6928–6929

    Article  CAS  Google Scholar 

  14. Yoshida K, Itoh T, Tamaru H, Biju V, Ishikawa M, Ozaki Y (2010) Quantitative evaluation of electromagnetic enhancement in surface-enhanced resonance Raman scattering from plasmonic poperties and morphologies of individual Ag nanostructures. Phys Rev B 81:115406–11541-9

    Article  Google Scholar 

  15. Creager SE, Steiger CM (1995) Conformational rigidity in a self-assembled monolayer of 4-mercaptobenzoic acid on gold. Langmuir 11:1852–1854

    Article  CAS  Google Scholar 

  16. Kudelski A (2009) Surface-enhanced Raman scattering study of monolayers formed from mixtures of 4-mercaptobenzoic acid and various aromatic mercapto-derivative bases. J Raman Spectrosc 40:2037–2043

    Article  CAS  Google Scholar 

  17. Michota A, Bukowska J (2003) Surface-enhanced Raman scattering (SERS) of 4-mercaptobenzoic acid on silver and gold substrates. J Raman Spectrosc 34:21–25

    Article  CAS  Google Scholar 

  18. Yu Y, Handa S, Yajima T, Futamata M (2013) Flocculation of Ag nanoparticles elucidating adsorbed p-mercaptobenzoic acid by surface enhanced raman scattering. Chem Phys Lett 560:49–54

    Article  CAS  Google Scholar 

  19. Frisch MJ et al (2009) Gaussian 09, revision A.01, Gaussian, Inc., Wallingford

    Google Scholar 

  20. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789

    Article  CAS  Google Scholar 

  21. Miehlich B, Savin A, Stoll H, Preuss H (1989) Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chem Phys Lett 157(3):200–206

    Article  CAS  Google Scholar 

  22. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652

    Article  CAS  Google Scholar 

  23. Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  24. Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125:194101–1941-18

    Article  Google Scholar 

  25. Cong VT, Ganbold EO, Saha JK, Jang J, Min J, Choo J, Kim S, Song NW, Son SJ, Lee SB, Joo SW (2014) Gold nanoparticle silica nanopeapods. J Am Chem Soc 136:3833–3841

    Article  CAS  Google Scholar 

  26. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA Jr (1993) General atomic and molecular electronic structure system. J Comput Chem 14(11):1347–1363

    Article  CAS  Google Scholar 

  27. Nakai H (2002) Energy density analysis with Kohn-Sham orbitals. Chem Phys Lett 363:73–79

    Article  CAS  Google Scholar 

  28. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  29. Cancès E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107(8):3032–3041

    Article  CAS  Google Scholar 

  30. Wang J, Wang G, Zhao J (2003) Structures and electronic properties of Cu20, Ag20, and Au20 clusters with density functional method. Chem Phys Lett 380:716–720

    Article  CAS  Google Scholar 

  31. Zhao L, Jensen L, Schatz GC (2006) Pyridine-Ag20 cluster: a model system for studying surface-enhanced raman scattering. J Am Chem Soc 128:2911–2919

  32. Kim KB, Han JH, Choi H, Kim HC, Chung TD (2012) Dynamic preconcentration of gold nanoparticles for surface-enhanced raman scattering in a microfluidic system. Small 8(3):378–383

    Article  CAS  Google Scholar 

  33. Aoki K, Kakiuchi T (1999) pK a of an ω-carboxylalkanethiol self-assembled monolayer by interaction model. J Electroanal Chem 478:101–107

    Article  CAS  Google Scholar 

  34. Atkins PW (1998) Physical chemistry, 6th edn. W. H. Freeman, New York

    Google Scholar 

Download references

Acknowledgements

This research was financially supported in part by “Development of Systems and Technology for Advanced Measurement and Analysis” program from JST, a “Grant-in-Aid for challenging Exploratory Research (26600065)” of the MEXT, Japan, and Waseda University Grant for Special Research Project number 2017B-189.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Homma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Homma, T., Kunimoto, M., Sasaki, M. et al. Surface enhanced Raman spectroscopy measurement of surface pH at the electrode during Ni electrodeposition reaction. J Appl Electrochem 48, 561–567 (2018). https://doi.org/10.1007/s10800-017-1139-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-017-1139-1

Keywords

Navigation