Journal of Applied Electrochemistry

, Volume 48, Issue 6, pp 561–567 | Cite as

Surface enhanced Raman spectroscopy measurement of surface pH at the electrode during Ni electrodeposition reaction

  • Takayuki Homma
  • Masahiro Kunimoto
  • Moe Sasaki
  • Tomoya Hanai
  • Masahiro Yanagisawa
Research Article


In this work, we developed a precise approach to analyze local proton concentration at the solid/liquid interface of electrodes, i.e. “surface pH”, during electrochemical reactions. For this, surface enhanced Raman spectroscopy (SERS) was applied to analyze pH-dependent structural changes of the –COOH group of p-mercaptobenzoic acid (p-MBA) modified onto Au nanoparticles (NPs) on the substrate close to a working electrode. Measurements using this system identified deprotonation of –COOH of p-MBA. Since preliminary experiments and density functional theory calculations suggest that the pKa of p-MBA attached to Au NPs is close to that in bulk solution, the SERS results indicate pH increase due to proton consumption by the cathodic overpotential of the working electrode. As an example, we applied this system to surface pH monitoring in electrodeposition process of Ni in an acidic bath, which indicated the validity of our method for precise detection of pH changes at electrode interfaces in situ.

Graphical Abstract


Surface pH Electrodeposition Surface enhanced Raman spectroscopy Au nano particles 



This research was financially supported in part by “Development of Systems and Technology for Advanced Measurement and Analysis” program from JST, a “Grant-in-Aid for challenging Exploratory Research (26600065)” of the MEXT, Japan, and Waseda University Grant for Special Research Project number 2017B-189.


  1. 1.
    Dahms H, Croll IM (1965) The anomalous codeposition of iron-nickel alloys. J Electrochem Soc 112:771–775CrossRefGoogle Scholar
  2. 2.
    Wei C, Bard AJ, Nagy G, Toth K (1995) Scanning electrochemical microscopy. 28. Ion–selective neutral carrier-based microelectrode potentiometry. Anal Chem 67:1346–1356CrossRefGoogle Scholar
  3. 3.
    Park JO, Paik CH, Alkire RC (1996) Scanning microsensors for measurement of local pH distributions at the microscale. J Electrochem Soc 143(8):L174–L176CrossRefGoogle Scholar
  4. 4.
    Klushmann E, Schultze JW (1997) pH-microscopy: theoretical and experimental investigations. Electrochim Acta 42:3123–3134CrossRefGoogle Scholar
  5. 5.
    Romankiw LT (1970) Specific ion activity measurement at an electrode during electrolysis. IBM Tech Discl Bull 13:69Google Scholar
  6. 6.
    Deligianni H, Romankiw LT (1993) In situ surface pH measurement during electrolysis using a rotating pH electrode. IBM J Res Dev 37(2):85–95CrossRefGoogle Scholar
  7. 7.
    Diaz SL, Mattos OR, Barcia OE, Miranda FJF (2002) ZnFe anomalous electrodeposition: stationaries and local pH measurements. Electrochim Acta 47:4091–4100CrossRefGoogle Scholar
  8. 8.
    Koza JA, Uhlemann M, Gebert A, Schultz L (2008) The effect of a magnetic field on the pH value in front of the electrode surface during the electrodeposition of Co, Fe and CoFe alloys. J Electroanal Chem 617:194–202CrossRefGoogle Scholar
  9. 9.
    Hessami S, Tobias CW (1993) In-situ measurement of interfacial pH using a rotating ring-disk electrode. AIChE J 39(1):149–162CrossRefGoogle Scholar
  10. 10.
    Nakao M, Yoshinobu T, Iwasaki H (1994) Improvement of spatial resolution of a laser-scanning ph-imaging sensor. Jpn J Appl Phys 33:L394–L397CrossRefGoogle Scholar
  11. 11.
    Han J, Brown BN, Young D, Nesic S (2010) Mesh-capped probe design for direct pH measurements at an actively corroding metal surface. J Appl Electrochem 40:683–690CrossRefGoogle Scholar
  12. 12.
    Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1999) Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev 99:2957–2975CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ueno K, Juodkazis S, Shibuya T, Yokota Y, Mizeikis V, Sasaki K, Misawa H (2008) Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source. J Am Chem Soc 130:6928–6929CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Yoshida K, Itoh T, Tamaru H, Biju V, Ishikawa M, Ozaki Y (2010) Quantitative evaluation of electromagnetic enhancement in surface-enhanced resonance Raman scattering from plasmonic poperties and morphologies of individual Ag nanostructures. Phys Rev B 81:115406–11541-9CrossRefGoogle Scholar
  15. 15.
    Creager SE, Steiger CM (1995) Conformational rigidity in a self-assembled monolayer of 4-mercaptobenzoic acid on gold. Langmuir 11:1852–1854CrossRefGoogle Scholar
  16. 16.
    Kudelski A (2009) Surface-enhanced Raman scattering study of monolayers formed from mixtures of 4-mercaptobenzoic acid and various aromatic mercapto-derivative bases. J Raman Spectrosc 40:2037–2043CrossRefGoogle Scholar
  17. 17.
    Michota A, Bukowska J (2003) Surface-enhanced Raman scattering (SERS) of 4-mercaptobenzoic acid on silver and gold substrates. J Raman Spectrosc 34:21–25CrossRefGoogle Scholar
  18. 18.
    Yu Y, Handa S, Yajima T, Futamata M (2013) Flocculation of Ag nanoparticles elucidating adsorbed p-mercaptobenzoic acid by surface enhanced raman scattering. Chem Phys Lett 560:49–54CrossRefGoogle Scholar
  19. 19.
    Frisch MJ et al (2009) Gaussian 09, revision A.01, Gaussian, Inc., WallingfordGoogle Scholar
  20. 20.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789CrossRefGoogle Scholar
  21. 21.
    Miehlich B, Savin A, Stoll H, Preuss H (1989) Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chem Phys Lett 157(3):200–206CrossRefGoogle Scholar
  22. 22.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652CrossRefGoogle Scholar
  23. 23.
    Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New YorkGoogle Scholar
  24. 24.
    Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125:194101–1941-18CrossRefGoogle Scholar
  25. 25.
    Cong VT, Ganbold EO, Saha JK, Jang J, Min J, Choo J, Kim S, Song NW, Son SJ, Lee SB, Joo SW (2014) Gold nanoparticle silica nanopeapods. J Am Chem Soc 136:3833–3841CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA Jr (1993) General atomic and molecular electronic structure system. J Comput Chem 14(11):1347–1363CrossRefGoogle Scholar
  27. 27.
    Nakai H (2002) Energy density analysis with Kohn-Sham orbitals. Chem Phys Lett 363:73–79CrossRefGoogle Scholar
  28. 28.
    Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299–310CrossRefGoogle Scholar
  29. 29.
    Cancès E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107(8):3032–3041CrossRefGoogle Scholar
  30. 30.
    Wang J, Wang G, Zhao J (2003) Structures and electronic properties of Cu20, Ag20, and Au20 clusters with density functional method. Chem Phys Lett 380:716–720CrossRefGoogle Scholar
  31. 31.
    Zhao L, Jensen L, Schatz GC (2006) Pyridine-Ag20 cluster: a model system for studying surface-enhanced raman scattering. J Am Chem Soc 128:2911–2919Google Scholar
  32. 32.
    Kim KB, Han JH, Choi H, Kim HC, Chung TD (2012) Dynamic preconcentration of gold nanoparticles for surface-enhanced raman scattering in a microfluidic system. Small 8(3):378–383CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Aoki K, Kakiuchi T (1999) pK a of an ω-carboxylalkanethiol self-assembled monolayer by interaction model. J Electroanal Chem 478:101–107CrossRefGoogle Scholar
  34. 34.
    Atkins PW (1998) Physical chemistry, 6th edn. W. H. Freeman, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Takayuki Homma
    • 1
    • 2
  • Masahiro Kunimoto
    • 2
  • Moe Sasaki
    • 1
  • Tomoya Hanai
    • 1
  • Masahiro Yanagisawa
    • 2
  1. 1.Department of Applied ChemistryWaseda UniversityTokyoJapan
  2. 2.Research Organization for Nano & Life InnovationWaseda UniversityTokyoJapan

Personalised recommendations