Skip to main content
Log in

One-step aqueous synthesis of thioglycolic acid-CdTe:Eu3+ quantum dots-sensitized TiO2 nanotube solar cells

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

CdTe- and Eu3+-doped CdTe quantum dot (QD)-sensitized TiO2 nanotube array (TiO2 NTA) photoelectrodes were prepared by using one-step aqueous synthesis. The effects of Eu3+ doping concentrations on the properties of CdTe QDs and CdTe/TiO2 NATs were systematically investigated. The absorption band of the sensitized TiO2 NTAs red shifted and broadened to the visible region when the CdTe- and Eu3+-doped CdTe QDs were deposited. The maximum incident photon of the current conversion efficiency (IPCE) value was 19.5% at 320 nm when the Eu3+ doping concentration was 2%. The photoconversion efficiency of CdTe:2% Eu3+/TiO2 NTAs increased to 1.09%, which was 28 times and 78 times that of CdTe/TiO2 NTAs and pure TiO2 NTAs, respectively. These results indicated the potential application of the prepared photoelectrode in QDs-sensitized solar cells (QDSSCs) and provided a basis for the development of QDSSCs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. He X, Cai Y, Zhang H, Liang C (2011) Photocatalytic degradation of organic pollutants with Ag decorated free-standing TiO2 nanotube arrays and interface electrochemical response. J Mater Chem 21:475

    Article  CAS  Google Scholar 

  2. Momeni MM, Mozafari AA (2016) The effect of number of silar cycles on morphological, optical and photo catalytic properties of cadmium sulfide-titania films. J Mater Sci: Mater Electron 27:10658–10666

    CAS  Google Scholar 

  3. Zhang Q, Chen G, Yang Y, Shen X, Zhang Y, Li C, Yu R, Luo Y, Li D, Meng Q (2012) Toward highly efficient CdS/CdSe quantum dots-sensitized solar cells incorporating ordered photoanodes on transparent conductive substrates. Phys Chem Chem Phys 14:6479

    Article  Google Scholar 

  4. Momeni MM, Hakimian M, Kazempour A (2015) In-situ manganese doping of TiO2 nanostructures via single-step electrochemical anodizing of titanium in an electrolyte containing potassium permanganate: a good visible-light photocatalyst. Ceram Int 41:13692–13701

    Article  CAS  Google Scholar 

  5. Momeni MM, Hosseini MG (2014) Different TiO2 nanotubes for back illuminated dye sensitized solar cell: fabrication, characterization and electrochemical impedance properties of DSSCs. J Mater Sci: Mater Electron 25:5027–5034

    CAS  Google Scholar 

  6. Luo L, Lin C, Tsai C, Wu H, Li L, Lo C, Lin C, Diau E (2010) Effects of aggregation and electron injection on photovoltaic performance of porphyrin-based solar cells with oligo(phenylethynyl) links inside TiO2 and Al2O3 nanotube arrays. Phys Chem Chem Phys 12:1064

    Article  CAS  Google Scholar 

  7. Feng H, Chen T TT, Yuan L, Cai L Q (2013) Visible light-induced efficiently oxidative decomposition of p-Nitrophenol by CdTe/TiO2 nanotube arrays. Chem Eng J 215–216:591–599

    Article  Google Scholar 

  8. Momeni MM, Ghayeb Y (2015) Fabrication, characterization and photoelectrochemical behavior of Fe-TiO2 nanotubes composite photoanodes for solar water splitting. J Electroanal Chem 751:43–48

    Article  CAS  Google Scholar 

  9. Momeni MM, Ghayeb Y, Ghonchegi Z (2015) Visible light activity of sulfur-doped TiO2 nanostructure photoelectrodes prepared by single-step electrochemical anodizing process. J Solid State Electrochem 19:1359–1366

    Article  CAS  Google Scholar 

  10. Momeni MM, Ghayeb Y (2015) Visible light-driven photoelectrochemical water splitting on ZnO–TiO2 heterogeneous nanotube photoanodes. J Appl Electrochem 45:557–566

    Article  CAS  Google Scholar 

  11. Ghayeb Y, Momeni MM, Mozafari A (2016) Effect of silver sulfide decorating on structural, optical and photo catalytic properties of iron-doped titanium dioxide nanotubes films. J Mater Sci: Mater Electron 27:11804–11813

    CAS  Google Scholar 

  12. Momeni MM, Nazari Z (2016) Preparation of TiO2, and WO3-TiO2, nanotubes decorated with PbO nanoparticles by chemical bath deposition process: a stable and efficient photo catalyst. Ceram Int 42:8691–8697

    Article  CAS  Google Scholar 

  13. Momeni MM, Ghayeb Y (2016) Fabrication, characterization and photoelectrochemical performance of chromium-sensitized titania nanotubes as efficient photoanodes for solar water splitting. J Solid State Electrochem 20:683–689

    Article  CAS  Google Scholar 

  14. Zhang KX, Yu YX, Sun SQ (2012) Influence of Eu doping on the microstructure and photoluminescence of CdS nanocrystals. Appl Surf Sci 258:7658–7663

    Article  CAS  Google Scholar 

  15. Poornima K, Krishnan KG, Lalitha B, Raja M (2015) CdS quantum dots sensitized Cu doped ZnO nanostructured thin films for solar cell applications. Superlattice Microstruct 83:147–156

    Article  CAS  Google Scholar 

  16. Liu J, Li X (2014) Hydrothermal synthesis of CdTe quantum dots-TiO2-graphene hybrid. Phys Lett A 378:405–407

    Article  CAS  Google Scholar 

  17. Chen Q, Song J, Zhou C, Pang Q, Zhou L (2016) Application research of CdS: Eu3+ quantum dots-sensitized TiO2 nanotube solar cells. Mater Sci Semicond Process 46:53–58

    Article  CAS  Google Scholar 

  18. Huang L, Peng F, Wang H, Yu H, Geng W, Yang J, Zhang S, Zhao H (2011) Controlled synthesis of octahedral Cu2O on TiO2 nanotube arrays by electrochemical deposition. Mater Chem Phys 130:316–322

    Article  CAS  Google Scholar 

  19. Wang Q, Yang X, Chi L, Cui M (2013) Photoelectrochemical performance of CdTe sensitized TiO2 nanotube array photoelectrodes. Electrochim Acta 91:330–336

    Article  CAS  Google Scholar 

  20. Song J, Zhang X, Zhou C, Lan Y, Pang Q, Zhou L (2015) Synthesis and characterization of TiO2 nanotubes sensitized with CdS quantum dots using a one-step method. J Electron Mater 44:22–27

    Article  CAS  Google Scholar 

  21. Wang R, Wang Y, Feng Q, Zhou L, Gong F, Lan Y (2012) Synthesis and characterization of cysteamine-CdTe quantum dots via one-step aqueous method. Mater Lett 66:261–263

    Article  Google Scholar 

  22. Mandal P, Talwar SS, Major SS,. Srinivasa RS (2008) Orange-red luminescence from Cu doped CdS nanophosphor prepared using mixed Langmuir-Blodgett multilayers. J Chem Phys 128:114703

    Article  CAS  Google Scholar 

  23. Unni C, Philip D, Smitha SL, Nissamudeen KM, Gopchandran KG (2009) Aqueous synthesis and characterization of CdS, CdS: Zn2+ and CdS: Cu2+ quantum dots. Spectrochim Acta Part A 72:827–832

    Article  CAS  Google Scholar 

  24. Zhou C, Song J, Zhang X, Sun L, Zhou L, Huang N, Gan Y, Chen M, Zhang W (2016) Synthesis and characterization of Eu3+-doped CdS quantum dots by a single-step aqueous method. J Nanosci Nanotechnol 16:3848–3851

    Article  CAS  Google Scholar 

  25. Chowdhury PS, Saha S, Patra A (2004) Influence of nanoenvironment on luminescence of Eu3+ activated SnO2 nanocrystals. Solid State Commun 131:785–788

    Article  CAS  Google Scholar 

  26. Tang G, Zhu J, Zhu Y, Bai C (2008) The study on properties of Eu3+-doped fluorogallate glasses. J Alloy Compd 453:487–492

    Article  CAS  Google Scholar 

  27. Tariq GH, Anis-ur-Rehman M (2015) Annealing effects on physical properties of doped CdTe thin films for photovoltaic applications. Mater Sci Semicond Process 30:665–671

    Article  CAS  Google Scholar 

  28. Butler M (1977) Photoelectrolysis and physical property of the semiconductor. J Appl Phys 48:1924

    Google Scholar 

  29. Li D, Wang S, Wang J, Zhang X, Liu S (2013) Synthesis of CdTe/TiO2 nanoparticles and their photocatalytic activity. Mater Res Bull 48:4283–4286

    Article  CAS  Google Scholar 

  30. Fan GC, Han L, Zhu H, Zhang JR, Zhu JJ (2014) Ultrasensitive photoelectrochemical immunoassay for matrix metalloproteinase‑2 detection based on CdS:Mn/CdTe cosensitized TiO2 nanotubes and signal amplification of SiO2@Ab2 conjugates. Anal Chem 86:12398–12405

    Article  CAS  Google Scholar 

  31. An L, Zhang J, Liu M, Chen S, Wang S (2008) Preparation and photoluminescence of Sm3+ and Eu3+ doped Lu2O3 phosphor. Opt Mater 30:957–960

    Article  CAS  Google Scholar 

  32. Hong JS, Jeong JW, Chae WS, Kim KJ (1999) Photocurrent stability of cds sensitized TiO2 electrodes. Bull Korean Chem Soc 20(5):597–599

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61664002); the Science Foundation of Guangxi Province (No. 2016GXNSFDA380036); and the Students Innovation and Entrepreneurship Training Program of Guangxi University (201610593040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liya Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Zhou, C., Zhang, X. et al. One-step aqueous synthesis of thioglycolic acid-CdTe:Eu3+ quantum dots-sensitized TiO2 nanotube solar cells. J Appl Electrochem 48, 27–35 (2018). https://doi.org/10.1007/s10800-017-1131-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-017-1131-9

Keywords

Navigation