Skip to main content

Advertisement

Log in

Facile synthesis of hollow Ni0.2Mn0.8O1.5 twin microspheres for electrochemical energy storage

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Novel hollow Ni0.2Mn0.8O1.5 twin microspheres were synthesized through a facile solvothermal reaction followed by calcination. The prepared hollow twin microspheres were composed of a large number of aggregated nanoparticles, with many pores homogeneously distributed across the whole of the twin microspheres. Benefiting from such structural advantages, such as the void core and high porosity, the prepared hollow Ni0.2Mn0.8O1.5 twin microspheres, as an electrode for supercapacitors, exhibited remarkable electrochemical performance with a large specific capacitance (491 F g−1 at 0.5 A g−1), desirable rate capability (81% of capacity retention at 5 A g−1), and excellent cycling stability (94.6% of the initial capacity after 2000 cycles). Moreover, a fabricated asymmetric supercapacitor cell based on Ni0.2Mn0.8O1.5 and active carbon demonstrated an energy density of 19.5 Wh kg−1 at a power density of 799 W kg−1, suggesting a promising practical application for these microspheres in supercapacitors.

Graphical Abstract

Novel hollow Ni0.2Mn0.8O1.5 twin microspheres have been synthesized based on the oriented attachment and Ostwald ripening effects, demonstrating high energy density and power density for the promising application in energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321:651–652

    Article  CAS  Google Scholar 

  2. Miller JR (2016) Engineering electrochemical capacitor applications. J Power Sources 326:726–735

    Article  CAS  Google Scholar 

  3. Portet C, Taberna PL, Simon P, Flahaut E, Laberty-Robert C (2005) High power density electrodes for carbon supercapacitor applications. Electrochim Acta 50:4174–4181

    Article  CAS  Google Scholar 

  4. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12

    Article  CAS  Google Scholar 

  5. Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energ Environ Sci 7:1597–1614

    Article  CAS  Google Scholar 

  6. Long X, Wang Z, Xiao S, An Y, Yang S (2016) Transition metal based layered double hydroxides tailored for energy conversion and storage. Mater Today 19:213–226

    Article  CAS  Google Scholar 

  7. Peng Z, Liu X, Meng H, Li Z, Li B, Liu Z, Liu S (2017) Design and tailoring of the 3D macroporous hydrous RuO2 hierarchical architectures with a hard-template method for high-performance supercapacitors. ACS Appl Mater Interface 9:4577–4586

    Article  Google Scholar 

  8. Wei W, Cui X, Chen W, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697–1721

    Article  CAS  Google Scholar 

  9. Zheng X, Han Z, Chai F, Qu F, Xia H, Wu X (2016) Flexible heterostructured supercapacitor electrodes based on α-Fe2O3 nanosheets with excellent electrochemical performances. Dalton Trans 45:12862–12870

    Article  CAS  Google Scholar 

  10. Xu W, Dai S, Liu G, Xi Y, Hu C, Wang X (2016) CuO nanoflowers growing on carbon fiber fabric for flexible high-performance supercapacitors. Electrochim Acta 203:1–8

    Article  CAS  Google Scholar 

  11. Liu F, Zhang B, Su H, Zhang H, Zhang L, Yang W (2016) Controllable synthesis of self-assembly Co3O4 nanoflake microspheres for electrochemical performance. Nanotechnology 27:355603

    Article  Google Scholar 

  12. Liu A, Che H, Mao Y, Wang Y, Mu J, Wu C, Bai Y, Zhang X, Wang G (2016) Template-free synthesis of one-dimensional hierarchical NiO nanotubes self-assembled by nanosheets for high-performance supercapacitors. Ceram Int 42:11435–11441

    Article  CAS  Google Scholar 

  13. Wu Z, Zhu Y, Ji X (2014) NiCo2O4-based materials for electrochemical supercapacitors. J Mater Chem A 2:14759–14772

    Article  CAS  Google Scholar 

  14. Li L, Zhang YQ, Liu XY, Shi SJ, Zhao XY, Zhang H, Ge X, Cai GF, Gu CD, Wang XL, Tu JP (2014) One-dimension MnCo2O4 nanowire arrays for electrochemical energy storage. Electrochim Acta 116:467–474

    Article  CAS  Google Scholar 

  15. Sankar KV, Selvan RK, Meyrick D (2015) Electrochemical performances of CoFe2O4 nanoparticles and a rGO based asymmetric supercapacitor. RSC Adv 5:99959–99967

    Article  CAS  Google Scholar 

  16. Zhang M, Guo S, Zheng L, Zhang G, Hao Z, Kang L, Liu ZH (2013) Preparation of NiMn2O4 with large specific surface area from an epoxide-driven sol – gel process and its capacitance. Electrochim Acta 87:546–553

    Article  CAS  Google Scholar 

  17. Wang Y, Chai H, Dong H, Xu J, Jia D, Zhou W (2016) Superior cycle stability performance of quasi-cuboidal CoV2O6 microstructures as electrode material for supercapacitors. ACS Appl Mater Inter 8:27291–27297

    Article  CAS  Google Scholar 

  18. Yuan C, Wu HB, Xie Y, Lou XW (2014) Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem 53:1488–1504

    Article  CAS  Google Scholar 

  19. Ren L, Chen J, Wang X, Zhi M, Wu J, Zhang X (2015) Facile synthesis of flower-like CoMn2O4 microspheres for electrochemical supercapacitors. RSC Adv 5:30963–30969

    Article  CAS  Google Scholar 

  20. Huang T, Zhao C, Qiu Z, Luo J, Hu Z (2017) Hierarchical porous ZnMn2O4 synthesized by the sucrose-assisted combustion method for high-rate supercapacitors. Ionics 23:139–146

    Article  CAS  Google Scholar 

  21. Wei H, Wang J, Yu L, Zhang Y, Hou D, Li T (2016) Facile synthesis of NiMn2O4 nanosheet arrays grown on nickel foam as novel electrode materials for high-performance supercapacitors. Ceram Int 42:14963–14969

    Article  CAS  Google Scholar 

  22. Giri S, Ghosh D, Das CK (2013) One pot synthesis of ilmenite-type NiMnO3-“nitrogendoped” graphene nanocomposite as next generation supercapacitors. Dalton Trans 42:14361–14364

    Article  CAS  Google Scholar 

  23. Perera SD, Ding X, Bhargava A, Hovden R, Nelson A, Kourkoutis LF, Robinson RD (2015) Enhanced supercapacitor performance for equal Co-Mn stoichiometry in colloidal Co3−xMnxO4 nanoparticles, in additive-free electrodes. Chem Mater 27:7861–7863

    Article  CAS  Google Scholar 

  24. Liu Y, Bai J, Ma X, Li J, Xiong S (2014) Formation of quasi-mesocrystal ZnMn2O4 twin microspheres via an oriented attachment for lithium-ion batteries. J Mater Chem A 2:14236–14244

    Article  CAS  Google Scholar 

  25. Che H, Liu A, Mu J, Bai Y, Wu C, Zhang X, Zhang Z, Wang G (2017) Facile synthesis of flower-like NixCo3–xO4 (0 ≤ x ≤ 1.5) microstructures as high-performance electrode materials for supercapacitors. Electrochim Acta 225:283–291

    Article  CAS  Google Scholar 

  26. Marco JF, Gancedo JR, Gracia M, Gautier JL, Rios E, Berry FJ (2000) Characterization of the nickel cobaltite, NiCo2O4, prepared by several methods: an XRD, XANES, EXAFS, and XPS study. J Solid State Chem 153:74–81

    Article  CAS  Google Scholar 

  27. Chen Z, Yang Q, Li H, Li X, Wang L, Tsang SC (2010) Cr-MnOx mixed-oxide catalysts for selective catalytic reduction of NOx with NH3 at low temperature. J Catal 276:56–65

    Article  CAS  Google Scholar 

  28. Zhang Y, Hu Z, An Y, Guo B, An N, Liang Y, Wu H (2016) High-performance symmetric supercapacitor based on manganese oxyhydroxide nanosheets on carbon cloth as binder-free electrodes. J Power Sources 311:121–129

    Article  CAS  Google Scholar 

  29. Bai J, Li X, Liu G, Qian Y, Xiong S (2014) Unusual formation of ZnCo2O4 3D hierarchical twin microspheres as a high-rate and ultralong-life lithium-ion battery anode material. Adv Funct Mater 24:3012–3020

    Article  CAS  Google Scholar 

  30. Ji S, Ma Y, Wang H, Key J, Brett DJL, Wang R (2016) Cage-like MnO2-Mn2O3 hollow spheres with high specific capacitance and high rate capability as supercapacitor material. Electrochim Acta 219:540–546

    Article  CAS  Google Scholar 

  31. Xiao Y, Cao Y, Gong Y, Zhang A, Zhao J, Fang S, Jia D, Li F (2014) Electrolyte and composition effects on the performances of asymmetric supercapacitors constructed with Mn3O4 nanoparticles-graphene nanocomposites. J Power Sources 246:926–933

    Article  CAS  Google Scholar 

  32. Kuang M, Wen ZQ, Guo XL, Zhang SM, Zhang YX (2014) Engineering firecracker-like beta-manganese dioxides@spinel nickel cobaltates nanostructures for high-performance supercapacitors. J Power Sources 270:426–433

    Article  CAS  Google Scholar 

  33. Ghodbane O, Louro M, Coustan L, Patru A, Favier F (2013) Microstructural and morphological effects on charge storage properties in MnO2-carbon nanofibers based supercapacitors. J Electrochem Soc 160:A2315–A2321

    Article  CAS  Google Scholar 

  34. Hui KN, Hui KS, Tang Z, Jadhav VV, Xia QX (2016) Hierarchical chestnut-like MnCo2O4 nanoneedles grown on nickel foam as binder-free electrode for high energy density asymmetric supercapacitors. J Power Sources 330:195–203

    Article  CAS  Google Scholar 

  35. Wang DW, Li F, Cheng HM (2008) Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric supercapacitor. J Power Sources 185:1563–1568

    Article  CAS  Google Scholar 

  36. Zhang S, Yin B, Wang Z, Peter F (2016) Super long-life all solid-state asymmetric supercapacitor based on NiO nanosheets and a-Fe2O3 nanorods. Chem Eng J 306:193–203

    Article  CAS  Google Scholar 

  37. Huang M, Zhang Y, Li F, Zhang L, Wen Z, Liu Q (2014) Facile synthesis of hierarchical Co3O4@MnO2 core-shell arrays on Ni foam for asymmetric supercapacitors. J Power Sources 252:98–106

    Article  CAS  Google Scholar 

  38. Lin YP, Wu NL (2011) Characterization of MnFe2O4/LiMn2O4 aqueous asymmetric supercapacitor. J Power Sources 196:851–854

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports from the Natural Science Foundation of Hebei Province (Grant No. B2017402110 and E2015402111), Top Young Talents of Higher Learning Institutions of Hebei Province (Grant No. BJ2016009), and The Scientific Research and Development Program of Handan City (Grant No. 1621211040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Che.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, A., Lv, Y., Mu, J. et al. Facile synthesis of hollow Ni0.2Mn0.8O1.5 twin microspheres for electrochemical energy storage. J Appl Electrochem 48, 15–26 (2018). https://doi.org/10.1007/s10800-017-1130-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-017-1130-x

Keywords

Navigation