Skip to main content
Log in

Continuous separation and recovery of caesium by electromagnetic coupling regeneration process with an electroactive magnetic Fe3O4@cupric hexacyanoferrate

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, we report on novel electroactive magnetic nanospheres for caesium separation and recovery, which is composed of a magnetic Fe3O4 nanosphere and electroactive cupric hexacyanoferrate coating. It is found that such electroactive magnetic Fe3O4@cupric hexacyanoferrate nanospheres show high ion exchange capacity, excellent selectivity, and rapid ion insertion kinetics. The electroactive magnetic Fe3O4@cupric hexacyanoferrate nanospheres can be regenerated by simply switching the potential of the magnetic electrode in a novel electromagnetic coupling regeneration system. Moreover, the capacity of electroactive magnetic Fe3O4@cupric hexacyanoferrate nanospheres towards Cs+ is nearly unchanged after 20 cycles, and a high regeneration efficiency of higher than 98% is maintained in each cycle. These novel electroactive magnetic nanospheres show high ion exchange capacity, excellent selectivity, rapid ion release kinetics, and remarkable electrochemical performance, and the problem of secondary pollution and resource waste is solved. Hence, they used to be a promising alternative to the conventional techniques for caesium ion capture from wastewater.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chen R, Tanaka H, Kawamoto T, Asai M, Fukushima C, Na H, Kurihara M, Watanabe M, Arisaka M, Nankawa T (2013) Selective removal of cesium ions from wastewater using copper hexacyanoferrate nanofilms in an electrochemical system. Electrochim Acta 87:119–125

    Article  CAS  Google Scholar 

  2. Hu B, Fugetsu B, Yu H, Abe Y (2012) Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium. J Hazard Mater 217–218:85–91

    Google Scholar 

  3. Parajuli D, Tanaka H, Hakuta Y, Minami K, Fukuda S, Umeoka K, Kamimura R, Hayashi Y, Ouchi M, Kawamoto T (2013) Dealing with the aftermath of Fukushima Daiichi nuclear accident: decontamination of radioactive cesium enriched ash. Environ Sci Technol 47:3800–3806

    Article  CAS  Google Scholar 

  4. Guo Y, Wang Q, Saidi WA (2017) Structural stabilities and electronic properties of high-angle grain boundaries in perovskite cesium lead halides. J Phys Chem C 121:1715–1722

    Article  CAS  Google Scholar 

  5. Adams E, Chaban V, Khandelia H, Shin R (2015) Selective chemical binding enhances cesium tolerance in plants through inhibition of cesium uptake. Sci Rep 5:8842–8852

    Article  CAS  Google Scholar 

  6. Parab H, Sudersanan M (2010) Engineering a lignocellulosic biosorbent—coir pith for removal of cesium from aqueous solutions: equilibrium and kinetic studies. Water Res 44:854–860

    Article  CAS  Google Scholar 

  7. Awual MR, Yaita T, Miyazaki Y, Matsumura D, Shiwaku H, Taguchi T (2016) A reliable hybrid adsorbent for efficient radioactive cesium accumulation from contaminated wastewater. Sci Rep 6:19937–19947

    Article  CAS  Google Scholar 

  8. Seino S, Kawahara R, Ogasawara Y, Mizuno N, Uchida S (2016) Reduction-induced highly selective uptake of cesium ions by an ionic crystal based on silicododecamolybdate. Angew Chem 55:3987–3991

    Article  CAS  Google Scholar 

  9. Awual MR (2016) Ring size dependent crown ether based mesoporous adsorbent for high cesium adsorption from wastewater. Chem Eng J 303:539–546

    Article  CAS  Google Scholar 

  10. Chen R, Tanaka H, Kawamoto T, Asai M, Fukushima C, Kurihara M, Watanabe M, Arisaka M, Nankawa T (2012) Preparation of a film of copper hexacyanoferrate nanoparticles for electrochemical removal of cesium from radioactive wastewater. Electrochem Commun 25:23–25

    Article  CAS  Google Scholar 

  11. Lai YC, Chang YR, Chen ML, Lo YK, Lai JY, Lee DJ (2016) Poly(vinyl alcohol) and alginate cross-linked matrix with immobilized Prussian blue and ion exchange resin for cesium removal from waters. Bioresour Technol 214:192–198

    Article  CAS  Google Scholar 

  12. Chen G-R, Chang Y-R, Liu X, Kawamoto T, Tanaka H, Parajuli D, Kawasaki T, Kawatsu Y, Kobayashi T, Chen M-L, Lo Y-K, Lei Z, Lee D-J (2017) Cesium removal from drinking water using Prussian blue adsorption followed by anion exchange process. Sep Purif Technol 172:147–151

    Article  CAS  Google Scholar 

  13. Ding D, Lei Z, Yang Y, Feng C, Zhang Z (2013) Nickel oxide grafted andic soil for efficient cesium removal from aqueous solution: adsorption behavior and mechanisms. ACS Appl Mater Interfaces 5:10151–10158

    Article  CAS  Google Scholar 

  14. Kawahara R, Uchida S, Mizuno N (2015) Redox-induced reversible uptake—release of cations in porous ionic crystals based on polyoxometalate: cooperative migration of electrons with alkali metal ions. Chem Mater 27:2092–2099

    Article  CAS  Google Scholar 

  15. Vincent T, Vincent C, Guibal E (2015) Immobilization of metal hexacyanoferrate ion-exchangers for the synthesis of metal ion sorbents—a mini-review. Molecules 20:20582–20613

    Article  CAS  Google Scholar 

  16. Kim TY, An SS, Shim WG, Lee JW, Cho SY, Kim JH (2015) Adsorption and energetic heterogeneity properties of cesium ions on ion exchange resin. J Ind Eng Chem 27:260–267

    Article  CAS  Google Scholar 

  17. Vincent C, Barré Y, Vincent T, Guibal E (2015) Biopolymers as encapsulating agents for the immobilization of prussian blue and analogues for the sorption of cesium. Adv Mater Res 1130:507–510

    Article  Google Scholar 

  18. Yasutaka T, Tsuji H, Kondo Y, Suzuki Y, Takahashi A, Kawamoto T (2015) Rapid quantification of radiocesium dissolved in water by using nonwoven fabric cartridge filters impregnated with potassium zinc ferrocyanide. J Nucl Sci Technol 52:792–800

    Article  CAS  Google Scholar 

  19. Chen G-R, Chang Y-R, Liu X, Kawamoto T, Tanaka H, Kitajima A, Parajuli D, Takasaki M, Yoshino K, Chen M-L, Lo Y-K, Lei Z, Lee D-J (2015) Prussian blue (PB) granules for cesium (Cs) removal from drinking water. Sep Purif Technol 143:146–151

    Article  CAS  Google Scholar 

  20. Nilchi A, Saberi R, Moradi M, Azizpour H, Zarghami R (2011) Adsorption of cesium on copper hexacyanoferrate–PAN composite ion exchanger from aqueous solution. Chem Eng J 172:572–580

    Article  CAS  Google Scholar 

  21. Han F, Zhang G-H, Gu P (2012) Adsorption kinetics and equilibrium modeling of cesium on copper ferrocyanide. J Radioanal Nucl Chem 295:369–377

    Article  Google Scholar 

  22. Park Y, Kim C, Choi S-J (2014) Selective removal of Cs using copper ferrocyanide incorporated on organically functionalized silica supports. J Radioanal Nucl Chem 303:199–208

    Article  Google Scholar 

  23. Chaudhury S, Pandey AK, Goswami A (2014) Copper ferrocyanide loaded track etched membrane: an effective cesium adsorbent. J Radioanal Nucl Chem 304:697–703

    Article  Google Scholar 

  24. Li X, Feng J, Zhang R, Wang J, Su T, Tian Z, Han D, Zhao C, Fan M, Li C (2016) Quaternized chitosan/alginate-Fe3O4 magnetic nanoparticles enhance the chemosensitization of multidrug-resistant gastric carcinoma by regulating cell autophagy activity in mice. J Biomed Nanotechnol 12:948–961

    Article  CAS  Google Scholar 

  25. Zhang J, Chen N, Wang H, Gu W, Liu K, Ai P, Yan C, Ye L (2016) Dual-targeting superparamagnetic iron oxide nanoprobes with high and low target density for brain glioma imaging. J Colloid Interface Sci 469:86–92

    Article  CAS  Google Scholar 

  26. Yang H-M, Jang S-C, Hong SB, Lee K-W, Roh C, Huh YS, Seo B-K (2016) Prussian blue-functionalized magnetic nanoclusters for the removal of radioactive cesium from water. J Alloys Compd 657:387–393

    Article  CAS  Google Scholar 

  27. Opris C, Cojocaru BE, Apostol NG, Tudorache M, Coman SM, Parvulescu VI, Duraki B, Krumeich F, van Bokhoven JA (2017) Lignin fragmentation onto multifunctional Fe3O4@Nb2O5@Co@Re catalysts: the role of the composition and deposition route of rhenium. ACS Catal 7:3257–3267

    Article  CAS  Google Scholar 

  28. Li N, Huang G-W, Shen X-J, Xiao H-M, Fu S-Y (2013) Controllable fabrication and magnetic-field assisted alignment of Fe3O4-coated Ag nanowires via a facile co-precipitation method. J Mater Chem C 1:4879–4884

    Article  CAS  Google Scholar 

  29. Hou X, Zhang W, Wang X, Hu S, Li C (2015) Soft template PEG-assisted synthesis of Fe3O4@C nanocomposite as superior anode materials for lithium-ion batteries. Sci Bull 60:884–891

    Article  CAS  Google Scholar 

  30. Zhang M, Lei D, Yin X, Chen L, Li Q, Wang Y, Wang T (2010) Magnetite/graphene composites: microwave irradiation synthesis and enhanced cycling and rate performances for lithium ion batteries. J Mater Chem 20:5538–5543

    Article  CAS  Google Scholar 

  31. Sun H, Cao L, Lu L (2011) Magnetite/reduced graphene oxide nanocomposites: One step solvothermal synthesis and use as a novel platform for removal of dye pollutants. Nano Res 4:550–562

    Article  CAS  Google Scholar 

  32. Deng H, Li X, Peng Q, Wang X, Chen J, Li Y (2005) Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem 117:2842–2845

    Article  Google Scholar 

  33. Ding C, Zeng Y, Cao L, Zhao L, Zhang Y (2016) Hierarchically porous Fe3O4/C nanocomposite microspheres via a CO2 bubble-templated hydrothermal approach as high-rate and high-capacity anode materials for lithium-ion batteries. J Mater Chem A 4:5898–5908

    Article  CAS  Google Scholar 

  34. Meidanchi A, Akhavan O (2014) Superparamagnetic zinc ferrite spinel–graphene nanostructures for fast wastewater purification. Carbon 69:230–238

    Article  CAS  Google Scholar 

  35. Yi R, Ye G, Pan D, Wu F, Wen M, Chen J (2014) Novel core–shell structured superparamagnetic microspheres decorated with macrocyclic host molecules for specific recognition and magnetic removal of Pb(II). J Mater Chem A 2:6840–6846

    Article  CAS  Google Scholar 

  36. Jiao J, Wenda, Tang J, Chen L, Jing L (2016) Synthesis of well-defined Fe3O4 nanorods/N-doped graphene for lithium-ion batteries. Nano Res 9:1256–1266

    Article  Google Scholar 

  37. Mayakaduwa SS, Kumarathilaka P, Herath I, Ahmad M, Al-Wabel M, Ok YS, Usman A, Abduljabbar A, Vithanage M (2016) Equilibrium and kinetic mechanisms of woody biochar on aqueous glyphosate removal. Chemosphere 144:2516–2521

    Article  CAS  Google Scholar 

  38. Shah MT, Balouch A, Rajar K, Sirajuddin IA, Brohi AA, Umar (2015) Selective heterogeneous catalytic hydrogenation of ketone (C = O) to alcohol (OH) by magnetite nanoparticles following Langmuir-Hinshelwood kinetic approach. ACS Appl Mater Interfaces 7:6480–6489

    Article  CAS  Google Scholar 

  39. Jiang Y, Yu S, Wang B, Li Y, Sun W, Lu Y, Yan M, Song B, Dou S (2016) Prussian Blue@C composite as an ultrahigh-rate and long-life sodium-ion battery cathode. Adv Funct Mater 26:5315–5321

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This original research was proudly supported by the National Natural Science Foundation of China (21576184), the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi China, the Foundation of the Taiyuan University of Technology for Outstanding Young Teachers (2014YQ019), and the Research Project Supported by the Shanxi Scholarship Council of China (2015-039).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. Wang or H. Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 411 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wu, Z., Wang, M. et al. Continuous separation and recovery of caesium by electromagnetic coupling regeneration process with an electroactive magnetic Fe3O4@cupric hexacyanoferrate. J Appl Electrochem 48, 49–60 (2018). https://doi.org/10.1007/s10800-017-1128-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-017-1128-4

Keywords

Navigation