Advertisement

Journal of Applied Electrochemistry

, Volume 47, Issue 8, pp 905–915 | Cite as

Multiwalled carbon nanotubes twined α-nickel hydroxide microspheres as high-efficient urea electrooxidation catalysts

  • Lulu Bian
  • Tingting Du
  • Qingyang Du
  • Mulan Luo
  • Mingtao LiEmail author
Research Article
Part of the following topical collections:
  1. Hydrogen production

Abstract

Multiwalled carbon nanotube (MWCNT) twined α-Ni(OH)2 microspheres, denoted as α-Ni(OH)2@MWCNT, are synthesized by a facile solvothermal method and are developed as a remarkably active catalyst for urea electrooxidation in alkaline media. Through optimizing the mass ratio between α-Ni(OH)2 and MWCNT, it is found that α-Ni(OH)2@MWCNT catalyst with a weight ratio of 2.5:1 affords the highest current density of 2503 mA cm−2 mg−1 at the potential of 0.58 V versus Hg/HgO and the largest exchange current density of 1.49 × 10−4 mA cm−2 among all the studied catalysts, which are much higher than that of pure α-Ni(OH)2 microspheres and are about one order of magnitude higher than that of reported Ni(OH)2 nanosheets. Additionally, the α-Ni(OH)2@MWCNT catalysts also present superior durability than pure α-Ni(OH)2. The exceptional catalytic performance of α-Ni(OH)2@MWCNT catalysts is attributed to the good electronic transport of MWCNT and favorable mass transport facilitated by α-Ni(OH)2 hollow porous microspheres. These results suggest the feasibility of an easy and low-cost solvothermal method to develop high-efficient catalyst for urea electrooxidation.

Graphical Abstract

Bird-nest-like microspheres of α-Ni(OH)2@MWCNT catalyst were synthesized with MWCNT twined α-Ni(OH)2 ultrathin nanosheets by an economical solvothermal method.

Keywords

Urea electrooxidation MWCNT Microspheres α-Ni(OH)2@MWCNT 

Notes

Acknowledgements

The authors are grateful for the support received from the National Natural Science Foundation of China (21303132), and the Nature Science Foundation of Shan Xi Province (2013JM2010).

Supplementary material

10800_2017_1087_MOESM1_ESM.docx (82 kb)
Supplementary material 1 (DOCX 82 kb)

References

  1. 1.
    Liang Y, Liu Q, Asiri AM, Sun X (2015) Enhanced electrooxidation of urea using NiMoO4·xH2O nanosheet arrays on Ni foam as anode. Electrochim Acta 153:456–460CrossRefGoogle Scholar
  2. 2.
    Guo F, Ye K, Cheng K, Wang G, Cao D (2015) Preparation of nickel nanowire arrays electrode for urea electrooxidation in alkaline medium. J Power Sources 278:562–568CrossRefGoogle Scholar
  3. 3.
    Vedharathinam V, Botte GG (2012) Understanding the electro-catalytic oxidation mechanism of urea on nickel electrodes in alkaline medium. Electrochim Acta 81:292–300CrossRefGoogle Scholar
  4. 4.
    Ding R, Qi L, Jia M, Wang H (2014) Facile synthesis of mesoporous spinel NiCo2O4 nanostructures as highly efficient electrocatalysts for urea electro-oxidation. Nanoscale 6(3):1369–1376CrossRefGoogle Scholar
  5. 5.
    Yan W, Wang D, Botte GG (2012) Electrochemical decomposition of urea with Ni-based catalysts. Appl Catal B 127:221–226CrossRefGoogle Scholar
  6. 6.
    Wu M, Lin G, Yang R (2014) Hydrothermal growth of vertically-aligned ordered mesoporous nickel oxide nanosheets on three-dimensional nickel framework for electrocatalytic oxidation of urea in alkaline medium. J Power Sources 272:711–718CrossRefGoogle Scholar
  7. 7.
    Vedharathinam V, Botte GG (2013) Direct evidence of the mechanism for the electro-oxidation of urea on Ni(OH)(2) catalyst in alkaline medium. Electrochim Acta 108:660–665CrossRefGoogle Scholar
  8. 8.
    Simka W, Piotrowski J, Nawrat G (2007) Influence of anode material on electrochemical decomposition of urea. Electrochim Acta 52(18SI):5696–5703CrossRefGoogle Scholar
  9. 9.
    Simka W, Piotrowski J, Robak A, Nawrat G (2009) Electrochemical treatment of aqueous solutions containing urea. J Appl Electrochem 39(7):1137–1143CrossRefGoogle Scholar
  10. 10.
    Miller AT, Hassler BL, Botte GG (2012) Rhodium electrodeposition on nickel electrodes used for urea electrolysis. J Appl Electrochem 42(11):925–934CrossRefGoogle Scholar
  11. 11.
    Dan W, Wei Y, Botte GG (2011) Exfoliated nickel hydroxide nanosheets for urea electrolysis. Electrochem Commun 13(10):1135–1138CrossRefGoogle Scholar
  12. 12.
    Wang D, Yan W, Vijapur SH, Botte GG (2012) Enhanced electrocatalytic oxidation of urea based on nickel hydroxide nanoribbons. J Power Sources 217:498–502CrossRefGoogle Scholar
  13. 13.
    Yan W, Wang D, Botte GG (2012) Nickel and cobalt bimetallic hydroxide catalysts for urea electro-oxidation. Electrochim Acta 61:25–30CrossRefGoogle Scholar
  14. 14.
    Boggs BK, King RL, Botte GG (2009) Urea electrolysis: direct hydrogen production from urine. Chem Commun 32:4859–4861CrossRefGoogle Scholar
  15. 15.
    Wang L, Du T, Cheng J, Xie X, Yang B, Li M (2015) Enhanced activity of urea electrooxidation on nickel catalysts supported on tungsten carbides/carbon nanotubes. J Power Sources 280:550–554CrossRefGoogle Scholar
  16. 16.
    Wang L, Li M, Huang Z, Li Y, Qi S, Yi C, Yang B (2014) Ni–WC/C nanocluster catalysts for urea electrooxidation. J Power Sources 264:282–289CrossRefGoogle Scholar
  17. 17.
    Yan H, Bai J, Wang J, Zhang X, Wang B, Liu Q, Liu L (2013) Graphene homogeneously anchored with Ni(OH)(2) nanoparticles as advanced supercapacitor electrodes. CrystEngComm 15(46):10007–10015CrossRefGoogle Scholar
  18. 18.
    Wu M, Ji R, Zheng Y (2014) Nickel hydroxide electrode with a monolayer of nanocup arrays as an effective electrocatalyst for enhanced electrolysis of urea. Electrochim Acta 144:194–199CrossRefGoogle Scholar
  19. 19.
    Lee JW, Ahn T, Soundararajan D, Ko JM, Kim J (2011) Non-aqueous approach to the preparation of reduced graphene oxide/α-Ni(OH)2 hybrid composites and their high capacitance behavior. Chem Commun 47(22):6305–6307CrossRefGoogle Scholar
  20. 20.
    Schneiderova B, Demel J, Plestil J, Janda P, Bohuslav J, Ihiawakrim D, Ersen O, Rogez G, Lang K (2013) Nickel hydroxide ultrathin nanosheets as building blocks for electrochemically active layers. J Mater Chem A 1(37):11429–11437CrossRefGoogle Scholar
  21. 21.
    Yang S, Wu X, Chen C, Dong H, Hu W, Wang X (2012) Spherical α-Ni(OH)2 nanoarchitecture grown on graphene as advanced electrochemical pseudocapacitor materials. Chem Commun 48(22):2773–2775CrossRefGoogle Scholar
  22. 22.
    Yunshi Zhang, Yuan H, Yang H, Yang E, Liu B (2000) Electrochemical studies of aluminum substituted a-Ni(OH)2 electrodes. Int J Hydrog Energy 25:333–337CrossRefGoogle Scholar
  23. 23.
    Tong G-X, Liu F, Wu W, Shen J, Hu X, Liang Y (2012) Polymorphous α- and β-Ni(OH)2 complex architectures: morphological and phasal evolution mechanisms and enhanced catalytic activity as non-enzymatic glucose sensors. CrystEngComm 12:5963–5973CrossRefGoogle Scholar
  24. 24.
    Zhang JT, Liu S, Pan GL, Li GR, Gao XP (2014) A 3D hierarchical porous α-Ni(OH)2/graphite nanosheet composite as an electrode material for supercapacitors. J Mater Chem A 2:1524–1529CrossRefGoogle Scholar
  25. 25.
    Zhou X, Xia Z, Zhang Z, Ma Y, Qu Y (2014) One-step synthesis of multi-walled carbon nanotubes/ultra-thin Ni(OH)2 nanoplate composite as efficient catalysts for water oxidation. J Mater Chem A 2:11799–11806CrossRefGoogle Scholar
  26. 26.
    Li W, Liang C, Qiu J, Zhou W, Han H, Wei Z, Sun G, Xin Q (2002) Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell. Carbon 40(5):791–794CrossRefGoogle Scholar
  27. 27.
    Ma C, Li H, Lin G, Zhang H (2010) Ni-decorated carbon nanotube-promoted Ni–Mo–K catalyst for highly efficient synthesis of higher alcohols from syngas. Appl Catal B 100(1–2):245–253CrossRefGoogle Scholar
  28. 28.
    Gao M, Sheng W, Zhuang Z, Fang Q, Gu S, Jiang J, Yan Y (2014) Efficient water oxidation using nanostructured alpha-nickel-hydroxide as an electrocatalyst. J Am Chem Soc 136(19):7077–7084CrossRefGoogle Scholar
  29. 29.
    Yuanyuan L, Guanghai L, Guotao D, Lide Z (2006) One-step synthesis of spherical alpha-Ni(OH)2 nanoarchitectures. Nanotechnology 17(16):4278–4283CrossRefGoogle Scholar
  30. 30.
    Machado S, Avaca LA (1994) The hydrogen evolution reaction on nickel surfaces stabilized by H-absorption. Electrochim Acta 39(10):1385–1391CrossRefGoogle Scholar
  31. 31.
    Hahn F, Beden B, Croissant MJ, Lamy C (1986) In situ UV visible reflectance spectroscopic investigation of the nickel electrode alkaline-solution interface. Electrochim Acta 31(3):335–342CrossRefGoogle Scholar
  32. 32.
    Feng L, Zhang Le, Jing L, Xiaoqing L, Xinzhe L, Yiyun F, Jingwei H, Wenzhu L, Min T, Jun J, Rong L (2015) Synthesis of Cu–MoS2/rGO hybrid as non-noble metal electrocatalysts for the hydrogen evolution reaction. J Power Sources 292:15–22CrossRefGoogle Scholar
  33. 33.
    Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10(10):780–786CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Lulu Bian
    • 1
  • Tingting Du
    • 1
  • Qingyang Du
    • 1
  • Mulan Luo
    • 1
  • Mingtao Li
    • 1
    Email author
  1. 1.School of Chemical Engineering and TechnologyXi’an Jiaotong UniversityXi’anPeople’s Republic of China

Personalised recommendations