Skip to main content
Log in

First-principles study of Pd-skin/Pd3Fe(111) electrocatalyst for oxygen reduction reaction

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The low reactivity of the oxygen reduction reaction (ORR) occurring on the cathode surface is a great challenge for designing an effective proton exchange membrane fuel cell. In this work, we assess the possibility of Pd-skin/Pd3Fe(111) alloy as the catalytic cathode for improving the performance of fuel cells. By using the density functional theory calculations, we studied the ORR activity and the stability of this alloy in the ORR environment. Looking at the energies of the reaction intermediates, Pd-skin/Pd3Fe(111) alloy was found to be more reactive than the PdCo alloy studied previously. It was found that having a monolayer of Fe atoms beneath the Pd-skin layer maximizes the ORR activity and the dissolution potential. However, the calculations also showed that surface segregation of the Fe atoms would be an issue for the stability of the Pd-skin structure in ORR environment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Srinivasan S (2006) Fuel cells from fundamentals to applications. Springer Science+Business Media, LLC, New York

    Google Scholar 

  2. Paddison SJ, Promislow KS (2009) Device and materials modeling in PEM fuel cells. Springer Science+Business Media, LLC, New York

    Book  Google Scholar 

  3. Markovic NM, Schmidt TJ, Stamenkovic V, Ross PN (2001) Oxygen reduction reaction on Pt and Pt bimetallic surfaces: a selective review. Fuel Cells 1:105–116

    Article  CAS  Google Scholar 

  4. Topalov AA, Katsounaros I, Auinger M, Cherevko S, Meier JC, Klemm SO, Mayrhofer KJJ (2012) Dissolution of platinum: limits for the deployment of electrochemical energy conversion? Angew Chem Int Ed 51:12613–12615

    Article  CAS  Google Scholar 

  5. Matsumoto M, Miyazaki T, Imai H (2011) Oxygen-enhanced dissolution of platinum in acidic electrochemical environments. J Phys Chem C 115:11163–11169

    Article  CAS  Google Scholar 

  6. Kongkanand A, Ziegelbauer JM (2012) Surface platinum electrooxidation in the presence of oxygen. J Phys Chem C 116:3684–3693

    Article  CAS  Google Scholar 

  7. Paik CH, Jarvi TD, O’Grady WE (2004) Extent of PEMFC cathode surface oxidation by oxygen and water measured by CV. Electrochem Solid-State Lett 7:A82–A84

    Article  CAS  Google Scholar 

  8. Son DN, Gam NT, Takahashi K (2016) Ab-initio study of surface oxide formation in Pt(111) electrocatalyst under influences of O2-containing intermediates of oxygen reduction reaction. J Appl Electrochem 46:1031–1038

    Article  Google Scholar 

  9. Mukerjee S, Srinivasan S, Soriaga MP (1995) Role of structural and electronic properties of Pt and Pt alloys on electrocatalysis of oxygen reduction. J Electrochem Soc 142:1409–1422

    Article  CAS  Google Scholar 

  10. Wang C, Markovic NM, Stamenkovic VR (2012) Advanced platinum alloy electrocatalysts for the oxygen reduction reaction. ACS Catal 2:891–898

    Article  CAS  Google Scholar 

  11. Ye S, Vijh AK (2003) Non-noble metal-carbonized aerogel composites as electrocatalysts for the oxygen reduction reaction. Electrochem Commun 5:272–275

    Article  CAS  Google Scholar 

  12. Savadago O, Lee K, Oishi K, Mitsushima S, Kamiya N, Ota KI (2004) New palladium alloys catalyst for the oxygen reduction reaction in an acid medium. J Electrochem Commun 6:105–109

    Article  Google Scholar 

  13. Antolini E (2009) Palladium in fuel cell catalysis. Energy Environ Sci 2:915–931

    Article  CAS  Google Scholar 

  14. Al-Hakemy AZ, Nassr ABAA, Naggar AH, Elnouby MS, Soliman HMAE-F, Taher MA (2016) Electrodeposited cobalt oxide nanoparticles modified carbon nanotubes as a non-precious catalyst electrode for oxygen reduction reaction. J Appl Electrochem. doi:10.1007/s10800-016-1027-0

    Google Scholar 

  15. Raghuveer V, Viswanathan B (2005) Nanocrystalline pyrochlore bonded to proton exchange membrane electrolyte as electrode material for oxygen reduction. J Mater Sci 40:6249–6255

    Article  CAS  Google Scholar 

  16. Cote R, Lalande G, Faubert G, Guay D, Dodelet JP, Denes G (1998) Non-noble metal-based catalysts for the reduction of oxygen in polymer electrolyte fuel cells. J New Mater Electrochem Syst 1:7–16

    CAS  Google Scholar 

  17. Vante NA, Tributsch H (1986) Energy conversion catalysis using semiconducting transition metal cluster compounds. Nature 323:431–432

    Article  CAS  Google Scholar 

  18. Kuriganova AB, Leontyeva DV, Ivanov S, Bund A, Smirnova NV (2016) Electrochemical dispersion technique for preparation of hybrid MOx–C supports and Pt/MOx–C electrocatalysts for low-temperature fuel cells. J Appl Electrochem 46:1245–1260

    Article  CAS  Google Scholar 

  19. Park AR, Lee YW, Kwak DH, Roh B, Hwang I, Park KW (2014) Enhanced electrocatalytic activity and stability of PdCo@Pt core–shell nanoparticles for oxygen reduction reaction. J Appl Electrochem 44:1219–1223

    Article  CAS  Google Scholar 

  20. Sawai K, Suzuki N (2004) Heat-treated transition metal hexacyanometallates as electrocatalysts for oxygen reduction insensitive to methanol. J Electrochem Soc 151:A682–A688

    Article  CAS  Google Scholar 

  21. Collman JP, Denisevich P, Konai Y, Marrocco M, Koval C, Anson FC (1980) Electrode catalysis of the four-electron reduction of oxygen to water by dicobalt face-to-face porphyrins. J Am Chem Soc 102:6027–6036

    Article  CAS  Google Scholar 

  22. Greeley J, Stephens IEL, Bondarenko AS, Johansson TP, Hansen HA, Jaramillo TF, Rossmeisl J, Chorkendorff I, Nørskov JK (2009) Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat Chem 1:552–556

    Article  CAS  Google Scholar 

  23. Matanović I, Garzon FH, Henson NJ (2011) Theoretical study of electrochemical processes on Pt–Ni alloys. J Phys Chem C 115:10640–10650

    Article  Google Scholar 

  24. Mustain WE, Prakash J (2007) Kinetics and mechanism for the oxygen reduction reaction on polycrystalline cobalt–palladium electrocatalysts in acid media. J Power Sources 170:28–37

    Article  CAS  Google Scholar 

  25. Shao M, Liu P, Zhang J, Adzic R (2007) Origin of enhanced activity in palladium alloy electrocatalysts for oxygen reduction reaction. J Phys Chem B 111:6772–6775

    Article  CAS  Google Scholar 

  26. Liu H, Li W, Manthiram A (2009) Factors influencing the electrocatalytic activity of Pd100−xCox (0 ≤ x ≤ 50) nanoalloys for oxygen reduction reaction in fuel cells. Appl Catal B: Environ 90:184–194

    Article  CAS  Google Scholar 

  27. Tominaka S, Momma T, Osaka T (2008) Electrodeposited Pd-Co catalyst for direct methanol fuel cell electrodes: preparation and characterization. Electrochim Acta 53:4679–4686

    Article  CAS  Google Scholar 

  28. Mustain WE, Kepler K, Prakash J (2006) Investigations of carbon-supported CoPd3 catalysts as oxygen cathodes in PEM fuel cells. Electrochem Commun 8:406–410

    Article  CAS  Google Scholar 

  29. Mustain WE, Kepler K, Prakash J (2007) CoPdx oxygen reduction electrocatalysts for polymer electrolyte membrane and direct methanol fuel cells. Electrochim Acta 52:2102–2108

    Article  CAS  Google Scholar 

  30. Zhang L, Lee K, Zhang J (2007) The effect of heat treatment on nanoparticle size and ORR activity for carbon-supported Pd-Co alloy electrocatalysts. Electrochim Acta 52:3088–3094

    Article  CAS  Google Scholar 

  31. Wang W, Zheng D, Du C, Zou Z, Zhang X, Xia B, Yang H, Akins DL (2007) Carbon-supported Pd-Co bimetallic nanoparticles as electrocatalysts for the oxygen reduction reaction. J Power Sources 167:243–249

    Article  CAS  Google Scholar 

  32. Liu H, Manthiram A (2008) Tuning the electrocatalytic activity and durability of low cost Pd70Co30 nanoalloy for oxygen reduction reaction in fuel cells. Electrochem Commun 10:740–744

    Article  CAS  Google Scholar 

  33. Oishi K, Savadogo O (2013) Electrochemical investigation of Pd–Co thin films binary alloy for the oxygen reduction reaction in acid medium. J Electroanal Chem 703:108–116

    Article  CAS  Google Scholar 

  34. Oishi K, Savadogo O (2013) Correlation between the physico-chemical properties and the oxygen reduction reaction electro catalytic activity in acid medium of Pd-Co alloys synthesized by ultrasonic spray method. Electrochim Acta 98:225–238

    Article  CAS  Google Scholar 

  35. Raghuveer V, Ferreira PJ, Manthiram A (2006) Comparison of Pd-Co-Au electrocatalysts prepared by conventional borohydride and microemulsion methods for oxygen reduction in fuel cells. Electrochem Commun 8:807–814

    Article  CAS  Google Scholar 

  36. Shao MH, Sasaki K, Adzic RR (2006) Pd-Fe nanoparticles as electrocatalysts for oxygen reduction. J Am Chem Soc 128:3526–3527

    Article  CAS  Google Scholar 

  37. Pires FI, Villullas HM (2012) Pd-based catalysts: influence of the second metal on their stability and oxygen reduction activity. Int J Hydrog Energy 37:17052–17059

    Article  CAS  Google Scholar 

  38. Song S, Wang Y, Tsiakaras P, Shen PK (2008) Direct alcohol fuel cells: a novel non-platinum and alcohol inert ORR electrocatalyst. Appl Catal B: Environ 78:381–387

    Article  CAS  Google Scholar 

  39. Neergat M, Gunasekar V, Rahul R (2011) Carbon-supported Pd-Fe electrocatalysts for oxygen reduction reaction (ORR) and their methanol tolerance. J Electroanal Chem 658:25–32

    Article  CAS  Google Scholar 

  40. Ramanathan M, Ramani V, Prakash J (2012) Kinetics of the oxygen reduction reaction on Pd3M (M = Cu, Ni, Fe) electrocatalysts synthesized at elevated annealing temperatures. Electrochim Acta 75:254–261

    Article  CAS  Google Scholar 

  41. Tarasevich MR, Zhutaeva GV, Bogdanovskaya VA, Radina MV, Ehrenburg MR, Chalykh AE (2007) Oxygen kinetics and mechanism at electrocatalysts on the base of palladium-iron system. Electrochim Acta 52:5108–5118

    Article  CAS  Google Scholar 

  42. Tang Y, Cao S, Chen Y, Lu T, Zhou Y, Lu L, Bao J (2010) Effect of Fe state on electrocatalytic activity of Pd-Fe/C catalyst for oxygen reduction. Appl Surf Sci 256:4196–4200

    Article  CAS  Google Scholar 

  43. Yang X, Hu J, Fu J, Wu R, Koel BE (2011) Role of surface iron in enhanced activity for the oxygen reduction reaction on a Pd3Fe(111) single-crystal alloy. Angew Chem Int Ed 50:10182–10185

    Article  CAS  Google Scholar 

  44. Son DN, Cong BT, Kasai H (2011) Hydronium adsorption on OOH precovered Pt(111) surface: effects of electrode potential. J Nanosci Nanotechnol 11:2983–2989

    Article  CAS  Google Scholar 

  45. Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  46. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  47. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  48. Blochl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  CAS  Google Scholar 

  49. Kresse G, Joubert J (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    Article  CAS  Google Scholar 

  50. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  51. Neugebauer J, Scheffler M (1992) Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K ad layers on Al(111). Phys Rev B 46:16067–16080

    Article  CAS  Google Scholar 

  52. Bengtsson L (1999) Dipole correction for surface supercell calculations. Phys Rev B 59:12301–12304

    Article  CAS  Google Scholar 

  53. Methfessel M, Paxton AT (1989) High-precision sampling for Brillouin-zone integration in metals. Phys Rev B 40:3616–3621

    Article  CAS  Google Scholar 

  54. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist LR, Kitchin JR, Bligaard T, Jónsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108:17886–17892

    Article  Google Scholar 

  55. Son DN, Takahashi K (2012) Selectivity of palladium-cobalt surface alloy toward oxygen reduction reaction. J Phys Chem C 116:6200–6207

    Article  CAS  Google Scholar 

  56. Son DN, Le OK, Chihaia V, Takahashi K (2015) Effects of Co content in Pd-skin/Pd-Co alloys for oxygen reduction reaction: density functional theory predictions. J Phys Chem C 119:24364–24372

    Article  CAS  Google Scholar 

  57. Wroblowa HS, Yen-Chi-Pan Razumney G (1976) Electroreduction of oxygen: a new mechanistic criterion. J Electroanal Chem 69:195–201

    Article  CAS  Google Scholar 

  58. Katsounaros I, Schneider WB, Meier JC, Benedikt U, Biedermann PU, Auer AA, Mayrhofer KJJ (2012) Hydrogen peroxide electrochemistry on platinum: towards understanding the oxygen reduction reaction mechanism. Phys Chem Chem Phys 14:7384–7391

    Article  CAS  Google Scholar 

  59. Duan Z, Wang G (2011) A first principles study of oxygen reduction reaction on a Pt(111) surface modified by a subsurface transition metal M (M=Ni Co, or Fe). Phys Chem Chem Phys 13:20178–20187

    Article  CAS  Google Scholar 

  60. Son DN, Nakanishi H, David MY, Kasai H (2009) Oxygen reduction on Pt(111) cathode of fuel cells. J Phys Soc Jpn 78:114601

    Article  Google Scholar 

  61. Viswanathan V, Hansen HA, Rossmeisl J, Nørskov JK (2012) Universality in oxygen reduction electrocatalysis on metal surfaces. ACS Catal 2:1654–1660

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Ho Chi Minh City Department of Science and Technology under contract No. 99/2015/HĐ-SKHCN. KT acknowledges the Ministry of Science and Technology, Taiwan (MOST105-2113-M-001-023), and Academia Sinica for financial support. We would like to thank the generous allocation of computational resources provided by the National Center for High-performance Computing and Academia Sinica Computing Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Do Ngoc Son, Kaito Takahashi or My Phuong Pham-Ho.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1850 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, D.N., Thanh, P.N., Quang, N.D. et al. First-principles study of Pd-skin/Pd3Fe(111) electrocatalyst for oxygen reduction reaction. J Appl Electrochem 47, 747–754 (2017). https://doi.org/10.1007/s10800-017-1077-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-017-1077-y

Keywords

Navigation