Skip to main content
Log in

Cockscomb-like Mn-doped Mn x Fe1−x CO3 as anode materials for a high-performance lithium-ion battery

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Partial manganese substitution of iron in ferrous carbonate (Mn x Fe1−x CO3, x = 0, 0.1, 0.2, 0.3) is obtained via a one-step hydrothermal method. The phase structure, morphology, and structural stability are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analysis, respectively. The results of XRD demonstrate that Mn-doping does not obviously change the phase structure. Mn x Fe1−x CO3 possesses cockscomb-like and tunnel structures observed by SEM images. Meanwhile, the results of XPS further demonstrate the existence of Fe2+ and Mn2+. Mn-doped FeCO3 samples remarkably improve galvanostatic charge–discharge stability and rate capability as anode materials for lithium-ion batteries because of the synergistic behavior of Fe2+ and Mn2+ with cockscomb-like and tunnel structures. Mn x Fe1−x CO3 (x = 0.2) as an anode material delivers an initial specific discharge capacity of 2400 mAh g−1 at 200 mA g−1 and 904 mAh g−1 over 100 cycles. Therefore, Mn x Fe1−x CO3 anode materials are promising for lithium-ion batteries because of their low-cost preparation, environmentally friendly nature, and excellent electrochemical performance.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yoshino A (2012) The birth of the lithium-ion battery. Angew Chem Int Edit 51:5798–5800

    Article  CAS  Google Scholar 

  2. Nitta N, Wu F, Lee JT et al (2015) Li-ion battery materials: present and future. Mater Today 18:252–264

    Article  CAS  Google Scholar 

  3. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603

    Article  CAS  Google Scholar 

  4. Abada S, Marlair G, Lecocq A et al (2016) Safety focused modeling of lithium-ion batteries: a review. J Power Sources 306:178–192

    Article  CAS  Google Scholar 

  5. Larcher D, Tarascon J (2014) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29

    Article  Google Scholar 

  6. Raccichini R, Varzi A, Passerini S et al (2014) The role of graphene for electrochemical energy storage. Nat Mater 14:271–279

    Article  Google Scholar 

  7. Fan X, Li S, Zhou H et al (2015) One-pot high temperature hydrothermal synthesis of Fe3O4@C/graphene nanocomposite as anode for high rate lithium ion battery. Electrochim Acta 180:1041–1049

    Article  CAS  Google Scholar 

  8. Magasinski A, Dixon P, Hertzberg B et al (2010) High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat Mater 9:353–358

    Article  CAS  Google Scholar 

  9. Qian J, Henderson WA, Xu W et al (2015) High rate and stable cycling of lithium metal anode. Nat Commun 6:6362–6370

    Article  CAS  Google Scholar 

  10. Zhang W, Li M, Wang Q et al (2011) Hierarchical self-assembly of microscale cog-like superstructures for enhanced performance in lithium-ion batteries. Adv Funct Mater 21:3516–3523

    Article  CAS  Google Scholar 

  11. Zaghib K, Simoneau M, Armand M et al (1999) Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries. J Power Sources 81–82:300–305

    Article  Google Scholar 

  12. Ge H, Li N, Li D et al (2009) Study on the theoretical capacity of spinel lithium titanate induced by low-potential intercalation. J Phys Chem C 113:6324–6326

    Article  CAS  Google Scholar 

  13. Xiu Z, Alfaruqi MH, Gim J et al (2016) MOF-derived mesoporous anatase TiO2 as anode material for lithium-ion batteries with high rate capability and long cycle stability. J Alloys Compd 674:174–178

    Article  CAS  Google Scholar 

  14. Hassoun J, Derrien G, Panero S et al (2008) A nanostructured Sn-C composite lithium battery electrode with unique stability and high electrochemical performance. Adv Mater 20:3169–3175

    Article  CAS  Google Scholar 

  15. Lou XW, Wang Y, Yuan C et al (2006) Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv Mater 18:2325–2329

    Article  CAS  Google Scholar 

  16. Zhao B, Huang S, Wang T et al (2015) Hollow SnO2@Co3O4 core–shell spheres encapsulated in three-dimensional graphene foams for high performance supercapacitors and lithium-ion batteries. J Power Sources 298:83–91

    Article  CAS  Google Scholar 

  17. Jia H, Stock C, Kloepsch R et al (2015) Facile synthesis and lithium storage properties of a porous NiSi2/Si/carbon composite anode material for lithium-ion batteries. ACS Appl Mater Interfaces 7:1508–1515

    Article  CAS  Google Scholar 

  18. Rahman MA, Song G, Bhatt AI et al (2016) Nanostructured silicon anodes for high-performance lithium-ion batteries. Adv Funct Mater 26:647–678

    Article  CAS  Google Scholar 

  19. Jiang Y, Li Z, Li B et al (2016) Ni3Si2 nanowires grown in situ on Ni foam for high-performance supercapacitors. J Power Sources 320:13–19

    Article  CAS  Google Scholar 

  20. Zhang K, Li P, Ma M et al (2016) Core-shelled low-oxidation state oxides@reduced graphene oxides cubes via pressurized reduction for highly stable lithium ion storage. Adv Funct Mater 26:2959–2965

    Article  CAS  Google Scholar 

  21. Sen UK, Shaligram A, Mitra S (2014) Intercalation anode material for lithium ion battery based on molybdenum dioxide. ACS Appl Mater Interfaces 6:14311–14319

    Article  Google Scholar 

  22. Liu Y, Zhang N, Yu C et al (2016) MnFe2O4@C nanofibers as high-performance anode for sodium-ion batteries. Nano Lett 16:3321–3328

    Article  CAS  Google Scholar 

  23. Liu W, Yang H, Zhao L et al (2016) Mesoporous flower-like Co3O4/C nanosheet composites and their performance evaluation as anodes for lithium ion batteries. Electrochim Acta 207:293–300

    Article  CAS  Google Scholar 

  24. Zheng X, Wang H, Wang C et al (2016) 3D interconnected macro-mesoporous electrode with self-assembled NiO nanodots for high-performance supercapacitor-like Li-ion battery. Nano Energy 22:269–277

    Article  CAS  Google Scholar 

  25. Bock DC, Pelliccione CJ, Zhang W et al (2016) Dispersion of nanocrystalline Fe3O4 within composite electrodes: insights on battery-related electrochemistry. ACS Appl Mater Interfaces 8:11418–11430

    Article  CAS  Google Scholar 

  26. Hu S, Yin F, Uchaker E et al (2014) Facile and green preparation for the formation of MoO2-GO composites as anode material for lithium-ion batteries. J Phys Chem C 118:24890–24897

    Article  CAS  Google Scholar 

  27. Aragón MJ, Pérez-Vicent C, Tirado JL (2007) Submicronic particles of manganese carbonate prepared in reverse micelles: a new electrode material for lithium-ion batteries. Electrochem Commun 9:1744–1748

    Article  Google Scholar 

  28. Shao L, Ma R, Wu K et al (2013) Metal carbonates as anode materials for lithium ion batteries. J Alloys Compd 581:602–609

    Article  CAS  Google Scholar 

  29. Zhao S, Yu Y, Wei S et al (2014) Hydrothermal synthesis and potential applicability of rhombohedral siderite as a high-capacity anode material for lithium ion batteries. J Power Sources 253:251–255

    Article  CAS  Google Scholar 

  30. Zhang R, Zhang F, Feng J et al (2014) Green and facile synthesis of porous ZnCO3 as a novel anode material for advanced lithium-ion batteries. Mater Letters 118:5–7

    Article  CAS  Google Scholar 

  31. Han W, Yang K, Li D et al (2016) The fabrication and characterization of Zn5(CO3)2(OH)6 as a new anode material for lithium ion batteries. Mater Letters 164:148–151

    Article  CAS  Google Scholar 

  32. Shao L, Wu K, Jiang X et al (2014) Preparation and characterization of basic carbonates as novel anode materials for lithium-ion batteries. Ceram Int 40:3105–3116

    Article  CAS  Google Scholar 

  33. Shao L, Wang S, Wu K et al (2014) Comparison of (BiO)2CO3 to CdCO3 as anode materials for lithium-ion batteries. Ceram Int 40:4623–4630

    Article  CAS  Google Scholar 

  34. Zhang C, Liu W, Chen D et al (2015) One step hydrothermal synthesis of FeCO3 cubes for high performance lithium-ion battery anodes. Electrochim Acta 182:559–564

    Article  CAS  Google Scholar 

  35. Zhong Y, Su L, Yang M et al (2013) Rambutan-like FeCO3 hollow microspheres: facile preparation and superior lithium storage performances. ACS Appl Mater Interfaces 5:11212–11217

    Article  CAS  Google Scholar 

  36. Ding Z, Yao B, Feng J et al (2013) Enhanced rate performance and cycling stability of a CoCO3–polypyrrole composite for lithium ion battery anodes. J Mater Chem A 1:11200–11209

    Article  CAS  Google Scholar 

  37. Kesavan T, Suresh S, Arulraj I et al (2014) Facile synthesis of hollow sphere MnCO3: a cheap and environmentally benign anode material for Li-ion batteries. Mater Lett 136:411–415

    Article  CAS  Google Scholar 

  38. Wang S, Li Q, Pu W et al (2016) Development of monodispersed MnCO3/graphene nanosheet composite as anode for lithium-ion battery by hydrothermal synthesis. Ionics 22:771–778

    Article  CAS  Google Scholar 

  39. Sharma Y, Sharma N, Rao GVS et al (2009) Nano-(Cd1/3Co1/3Zn1/3)CO3: a new and high capacity anode material for Li-ion batteries. J Mater Chem 19:5047

    Article  CAS  Google Scholar 

  40. Su L, Zhou Z, Qin X, Tang Q, Wu D, Shen P (2013) CoCO3 submicrocube/graphene composites with high lithium storage capability. Nano Energy 2:276–282

    Article  CAS  Google Scholar 

  41. Zhang F, Zhang R, Feng J et al (2015) One-pot solvothermal synthesis of graphene wrapped rice-like ferrous carbonate nanoparticles as anode materials for high energy lithium-ion batteries. Nanoscale 7:232–239

    Article  CAS  Google Scholar 

  42. Mirhashemihaghighi S, León B, Vicente CP et al (2012) Lithium storage mechanisms and effect of partial cobalt substitution in manganese carbonate electrodes. Inorg Chem 51:5554–5560

    Article  CAS  Google Scholar 

  43. Pertlik F (1986) Structures of hydrothermally synthesized cobalt(II) carbonate and nickel(II) carbonate. Acta Cryst C42:4–5

    CAS  Google Scholar 

  44. Zhao S, Yu Y, Wei S et al (2014) Hydrothermal synthesis and potential applicability of rhombohedral siderite as a high-capacity anode material for lithium ion batteries. J Power Sources 253:251–255

    Article  CAS  Google Scholar 

  45. Sun Y, Hu X, Luo W et al (2013) Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries. Adv Funct Mater 23:2436–2444

    Article  CAS  Google Scholar 

  46. Garakani MA, Abouali S, Zhang B et al (2014) Cobalt carbonate/and cobalt oxide/graphene aerogel composite anodes for high performance li-ion batteries. ACS Appl Mater Interfaces 6:18971–18980

    Article  CAS  Google Scholar 

  47. Li Z, Liu N, Wang X et al (2012) Three-dimensional nanohybrids of Mn3O4/ordered mesoporous carbons for high performance anode materials for lithium-ion batteries. J Mater Chem 22:16640–16648

    Article  CAS  Google Scholar 

  48. Jiang J, Li Y, Liu J et al (2012) Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater 24:5166–5180

    Article  CAS  Google Scholar 

  49. Ponrouch A, Taberna P, Simon P et al (2012) On the origin of the extra capacity at low potential in materials for Li batteries reacting through conversion reaction. Electrochim Acta 61:13–18

    Article  CAS  Google Scholar 

  50. Shim H, Jin Y, Seo S et al (2011) Highly reversible lithium storage in bacillus subtilis-directed porous Co3O4 nanostructures. ACS Nano 5:443–449

    Article  CAS  Google Scholar 

  51. Wang X, Guan H, Chen S et al (2011) Self-stacked Co3O4 nanosheets for high-performance lithium ion batteries. Chem Commun 47:12280–12282

    Article  CAS  Google Scholar 

  52. Liu S, Zhang H, Xu L et al (2016) High lithium storage performance of Mn-doped Sn4P3 nanoparticles. Electrochim Acta 210:888–896

    Article  CAS  Google Scholar 

  53. Guo M, Wang S, Ding L et al (2015) Tantalum-doped lithium titanate with enhanced performance for lithium-ion batteries. J Power Sources 283:372–380

    Article  CAS  Google Scholar 

  54. Luo G, Lu Y, Zeng S et al (2015) Synthesis of rGO-Fe3O4-SnO2-C quaternary hybrid mesoporous nanosheets as a high-performance anode material for lithium ion batteries. Electrochim Acta 182:715–722

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported financially by the Guangdong Science and Technology Planning Project (No. 2015A020209147 and 2014A010105038), the Guangdong Natural Science Foundation (No.9151064201000039), the National Natural Science Foundation of China (No. 51003034 and 21571066), and the Key Academic Program of the 3rd Phase ‘211 Project’ (No. 2009B010100001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyuan Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Xu, D., Chen, W. et al. Cockscomb-like Mn-doped Mn x Fe1−x CO3 as anode materials for a high-performance lithium-ion battery. J Appl Electrochem 47, 157–166 (2017). https://doi.org/10.1007/s10800-016-1028-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-1028-z

Keywords

Navigation