Advertisement

Journal of Applied Electrochemistry

, Volume 47, Issue 2, pp 183–195 | Cite as

Electrodeposited cobalt oxide nanoparticles modified carbon nanotubes as a non-precious catalyst electrode for oxygen reduction reaction

  • Ahmed Zaki Al-Hakemy
  • Abu Bakr Ahmed Amine Nassr
  • Ahmed Hosny Naggar
  • Mohamed Salaheldin Elnouby
  • Hesham Mohamed Abd El-Fattah Soliman
  • Mahmoud Ahmed Taher
Research Article
Part of the following topical collections:
  1. Fuel cells

Abstract

Oxygen reduction electrode is one of the important electrode materials for energy technologies because of the technical importance of oxygen reduction reaction (ORR) in the development of fuel cells and batteries. In this work, a fast, simple and applicable electrodeposition process has been used to modify the oxygenated functionalized carbon nanotubes (FCNTs) with cobalt oxide nanoparticles (CoOx) for use as an active catalyst electrode for ORR in alkaline medium. The prepared electrodes were characterized with structural techniques (XRD and TEM) to confirm the deposition of CoOx nanoparticle on FCNTs surface. The electrocatalytic activity of the prepared electrodes towards ORR was evaluated using different electrochemical methods such as cyclic voltammetry, linear sweep voltammetry combined with rotating disk electrode technique and chronoamperometry. Based on RDE measurements, the CoOx/FCNTs showed higher electrocatalytic activity and the mechanism of ORR proceeds via the four-electron mechanism, the favourable mechanism shown by the noble metal catalysts. However, the CoOx electrode exhibited only the two-electron mechanism with formation of hydrogen peroxide, rather than the four-electron mechanism, while the FCNTs electrode exhibited the two parallel mechanisms favouring four-electron mechanism only at higher overpotential. These results indicate the synergistic effect of the coupling between FCNTs and CoOx nanoparticles catalyzing the ORR via the direct four-electron mechanism. Such a synergistic effect is assumed to be attributed to the formation of an active interface between the FCNTs and CoOx resulting in highly catalytic active sites that allow the adsorption of oxygen and simultaneous reduction and/or the chemical decomposition of the intermediates, mainly the peroxide intermediate formed during the two-electron pathway mechanism. Moreover, compared to the benchmarked catalyst (Pt/C), the non-precious CoOx/FCNTs electrode showed both the higher stability under continuous ORR at a fixed potential for 6 h and higher tolerance for methanol poisoning. The results reported in this work could contribute to the development of high stable and fuel poisoning tolerance cathode electrodes for direct alkaline alcohol fuel cells.

Graphical Abstract

Keywords

Cobalt oxide electrodeposition CNTs Non-precious electrocatalysts ORR electrode Alkaline membrane fuel cells 

Notes

Acknowledgements

A.Z. Al-Hakemy gratefully acknowledges the SRAT-City for the internship to carry out the experimental work of his master thesis in its laboratories. The authors are greatly thankful for Mr. Osama Khamis Ahmed for his help with XRD measurements. AB.A. Nassr acknowledges the financial support from German Academic Exchange Service (DAAD), Bonn, Germany, on the Grant for Small equipment. AB.A. Nassr acknowledges the great support and help from Prof. Michael Bron, Professor of Industrial Chemistry at Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany, with materials and accessories that were necessary to achieve this work.

Supplementary material

10800_2016_1027_MOESM1_ESM.docx (2.4 mb)
Supplementary material 1 (DOCX 2479 kb)

References

  1. 1.
    Ge X, Sumboja A, Wuu D, An T, Li B, Goh FWT, Sum T, Hor TSA, Zong Y, Liu Z (2015) Oxygen reduction in alkaline media: from mechanisms to recent advances of catalysts. ACS Catal 5:4643–4667. doi: 10.1021/acscatal.5b00524 CrossRefGoogle Scholar
  2. 2.
    Lee WJ, Maiti NU, Lee MJ, Lim J, Han HT, Kim SO (2014) Nitrogen-doped carbon nanotubes and graphene composite structures for energy and catalytic applications. Chem Commun 50:6818–6830. doi: 10.1039/C4CC00146J CrossRefGoogle Scholar
  3. 3.
    Yan J, Lu H, Huang Y, Fu J, Mo S, Wei C, Miao YE, Liu T (2015) Polydopamine-derived porous carbon fiber/cobalt composites for efficient oxygen reduction reaction. J Mater Chem A 3:1–9. doi: 10.1039/C5TA06217A CrossRefGoogle Scholar
  4. 4.
    Huang C, Li C, Shi G (2012) Graphene based catalysts. Energy Environ Sci 5:8848–8868. doi: 10.1039/C2EE22238H CrossRefGoogle Scholar
  5. 5.
    Yang Z, Nie H, Chen X, Chen X, Huang S (2013) Recent progress in doped carbon nanomaterials as effective cathode catalysts for fuel cell oxygen reduction reaction. J Power Sources 236:238–249. doi: 10.1016/j.jpowsour.2013.02.057 CrossRefGoogle Scholar
  6. 6.
    Zhang L, Zhang J, Wilkinson DP, Wang H (2006) Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions. J Power Sources 156:171–182. doi: 10.1016/j.jpowsour.2005.05.069 CrossRefGoogle Scholar
  7. 7.
    Zhang L, Xia Z (2011) Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J Phys Chem C 115:11170–11176. doi: 10.1021/jp201991j CrossRefGoogle Scholar
  8. 8.
    Matter PH, Zhang L, Ozkan US (2006) The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction. J Catal 239:83–96. doi: 10.1016/j.jcat.2006.01.022 CrossRefGoogle Scholar
  9. 9.
    Daems N, Sheng X, Vankelecom IFJ, Pescarmona PP (2014) Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction. J Mater Chem A 2:4085–4110. doi: 10.1039/C3TA14043A CrossRefGoogle Scholar
  10. 10.
    Zhang G, Lu W, Cao F, Xiao Z, Zheng X (2016) N-doped graphene coupled with Co nanoparticles as an efficient electrocatalyst for oxygen reduction in alkaline media. J Power Sources 302:114–125. doi: 10.1016/j.jpowsour.2015.10.055 CrossRefGoogle Scholar
  11. 11.
    Zhong G, Wang H, Yu H, Peng F (2015) Nitrogen doped carbon nanotubes with encapsulated ferric carbide as excellent electrocatalyst for oxygen reduction reaction in acid and alkaline media. J Power Sources 286:495–503. doi: 10.1016/j.jpowsour.2015.04.021 CrossRefGoogle Scholar
  12. 12.
    Yang H, Wang H, Ji S, Linkov V, Wang R (2014) Synergy between isolated-Fe3O4 nanoparticles and CNx layers derived from lysine to improve the catalytic activity for oxygen reduction reaction. Int J Hydrog Energy 39:3739–3745. doi: 10.1016/j.ijhydene.2013.12.160 CrossRefGoogle Scholar
  13. 13.
    Ma Y, Wang H, Ji S, Goh J, Feng H, Wang R (2014) Highly active Vulcan carbon composite for oxygen reduction reaction in alkaline medium. Electrochim Acta 133:391–398. doi: 10.1016/j.electacta.2014.04.080 CrossRefGoogle Scholar
  14. 14.
    Chung H, Won JH, Zelenay P (2013) Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction. Nat Commun 4:1922. doi: 10.1038/ncomms2944 CrossRefGoogle Scholar
  15. 15.
    Liang Y, Wang H, Diao P, Chang W, Hong G, Li Y, Gong M, Xie L, Zhou J, Wang J, Regier TZ, Wei F, Dai H (2012) Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. Am Chem Soc 134:15849–15857. doi: 10.1021/ja305623m CrossRefGoogle Scholar
  16. 16.
    Xu J, Yu Q, Wu C, Guan L (2015) Oxygen reduction electrocatalysts based on spatially confined cobalt monoxide nanocrystals on holey N-doped carbon nanowires: the enlarged interfacial area for performance improvement. Mater Chem A 3:21647–21654. doi: 10.1039/C5TA05757D CrossRefGoogle Scholar
  17. 17.
    Wang S, Cui Z, Cao M (2015) A template-free method for preparation of cobalt nanoparticles embedded in N-doped carbon nanofibers with a hierarchical pore structure for oxygen reduction. Chem A Eur J 21:2165–2172. doi: 10.1002/chem.201404884 CrossRefGoogle Scholar
  18. 18.
    Bezerra CWB, Zhang L, Lee K, Liu H, Marques ALB, Marques EP, Wang H, Zhang J (2008) A review of Fe–N/C and Co–N/C catalysts for the oxygen reduction reaction. Electrochim Acta 53:4937–4951. doi: 10.1016/j.electacta.2008.02.012 CrossRefGoogle Scholar
  19. 19.
    Jaouen F, Proietti E, Lefèvre M, Chenitz R, Dodelet JP, Wu G, Chung HT, Johnston CM, Zelenay P (2011) Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ Sci 4:114–130. doi: 10.1039/C0EE00011F CrossRefGoogle Scholar
  20. 20.
    Liu J, Jiang L, Tang Q, Zhang B, Su DS, Wang S, Sun G (2012) Coupling effect between cobalt oxides and carbon for oxygen reduction reaction. ChemSusChem 5:2315–2318. doi: 10.1002/cssc.201200563 CrossRefGoogle Scholar
  21. 21.
    Liu J, Jiang L, Zhang B, Jin J, Su DS, Wang S, Sun G (2014) Controllable synthesis of cobalt monoxide nanoparticles and the size-dependent activity for oxygen reduction reaction. ACS Catal 4:2998–3001. doi: 10.1021/cs500741s CrossRefGoogle Scholar
  22. 22.
    Su Z, Zhu Y, Jiang H, Shen J, Yang X, Zou W, Chen J, Li C (2014) Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. Nanoscale 6:15080–15089. doi: 10.1039/C4NR04357J CrossRefGoogle Scholar
  23. 23.
    Herrmann I, Kramm UI, Fiechte S, Bogdanoff P (2009) Oxalate supported pyrolysis of CoTMPP as electrocatalysts for the oxygen reduction reaction. Electrochim Acta 54:4275–4287. doi: 10.1016/j.electacta.2009.02.056 CrossRefGoogle Scholar
  24. 24.
    Xu P, Chen W, Wang Q, Zhu T, Wu M, Qiao J, Chen Z, Zhang J (2015) Effects of transition metal precursors (Co, Fe, Cu, Mn, or Ni) on pyrolyzed carbon supported metal-aminopyrine electrocatalysts for oxygen reduction reaction. RSC Adv 5:6195–6206. doi: 10.1039/C4RA11643G CrossRefGoogle Scholar
  25. 25.
    Hernandez-Fernandez P, Baranton S, Rojas S, Ocon P, Leger JM, Fierro JLG (2011) Insights into the effects of functional groups on carbon nanotubes for the electrooxidation of methanol. Langmuir 27:9621–9629. doi: 10.1021/la2011452 CrossRefGoogle Scholar
  26. 26.
    Yang J, Zhang W, Gunasekaran S (2011) A low-potential, H2O2-assisted electrodeposition of cobalt oxide/hydroxide nanostructures onto vertically-aligned multi-walled carbon nanotube arrays for glucose sensing. Electrochim Acta 56:5538–5544. doi: 10.1016/j.electacta.2011.03.087 CrossRefGoogle Scholar
  27. 27.
    Vashista SK, Zheng D, Al-Rubeaand K, Luonge JHT, Sheu FS (2011) Advances in carbon nanotube based electrochemical sensors for bioanalytical applications. Biotechnol Adv 29:169–188. doi: 10.1016/j.biotechadv.2010.10.002 CrossRefGoogle Scholar
  28. 28.
    Helia H, Pishahang J (2014) Cobalt oxide nanoparticles anchored to multiwalled carbon nanotubes: synthesis and application for enhanced electrocatalytic reaction and highly sensitive nonenzymatic detection of hydrogen peroxide. Electrochim Acta 123:518–526. doi: 10.1016/j.electacta.2014.01.032 CrossRefGoogle Scholar
  29. 29.
    Wang Y, Zhang D, Liu H (2010) A study of the catalysis of cobalt hydroxide towards the oxygen reduction in alkaline media. J Power Sources 195:3135–3139. doi: 10.1016/j.jpowsour.2009.11.112 CrossRefGoogle Scholar
  30. 30.
    Wu J, Zhang D, Wang Y, Wan Y, Hou B (2012) Catalytic activity of graphene–cobalt hydroxide composite for oxygen reduction reaction in alkaline media. J Power Source 198:122–126. doi: 10.1016/j.jpowsour.2011.10.007 CrossRefGoogle Scholar
  31. 31.
    Nassr ABAA, Sinev I, Grünert W, Bron M (2013) PtNi supported on oxygen functionalized carbon nanotubes: in depth structural characterization and activity for methanol electrooxidation. Appl Catal B Environ 142–143:849–860. doi: 10.1016/j.apcatb.2013.06.013 CrossRefGoogle Scholar
  32. 32.
    Davis RE, Horvath GL, Tobias CW (1967) The solubility and diffusion coefficient of oxygen in potassium hydroxide solutions. Electrochim Acta 12:287–297. doi: 10.1016/0013-4686(67)80007-0 CrossRefGoogle Scholar
  33. 33.
    Xia W, Wang Y, Bergstra R, Kundu S, Muhler M (2007) Surface characterization of oxygen-functionalized multi-walled carbon nanotubes by high-resolution X-ray photoelectron spectroscopy and temperature-programmed desorption. Appl Surf Sci 254:247–250. doi: 10.1016/j.apsusc.2007.07.120 CrossRefGoogle Scholar
  34. 34.
    Steimecke M, Rümmler S, Bron M (2015) The effect of rapid functionalization on the structural and electrochemical properties of high-purity carbon nanotubes. Electrochim Acta 163:1–8. doi: 10.1016/j.electacta.2015.02.142 CrossRefGoogle Scholar
  35. 35.
    Yu J, Chen G, Sunarso J, Zhu Y, Ran R, Zhu Z, Zhou W, Zongping S (2016) Cobalt oxide and cobalt-graphitic carbon core–shell based catalysts with remarkably high oxygen reduction reaction activity. Adv Sci. doi: 10.1002/advs.201600060 Google Scholar
  36. 36.
    Heli H, Yadegari H (2010) Nanoflakes of the cobaltous oxide, CoO: synthesis and characterization. Electrochim Acta 55:2139–2148. doi: 10.1016/j.electacta.2009.11.047 CrossRefGoogle Scholar
  37. 37.
    Kruusenberg I, Alexeyeva N, Tammeveski K (2009) The pH-dependence of oxygen reduction on multi-walled carbon nanotube modified glassy carbon electrodes. Carbon 47:651–658. doi: 10.1016/j.carbon.2008.10.032 CrossRefGoogle Scholar
  38. 38.
    Kruusenberg I, Marandi M, Sammelselg V, Tammeveski K (2009) Hydrodynamic deposition of carbon nanotubes onto HOPG: the reduction of oxygen on CNT/HOPG electrodes in alkaline solution. Electrochem Solid State Lett 12:F31–F34. doi: 10.1149/1.3202406 CrossRefGoogle Scholar
  39. 39.
    Zhong G, Wang H, Yu H, Wang H, Peng F (2016) Chemically drilling carbon nanotubes for electrocatalytic oxygen reduction reaction. Electrochim Acta 190:49–56. doi: 10.1016/j.electacta.2015.12.216 CrossRefGoogle Scholar
  40. 40.
    Maa Z, Guoa C, Yina Y, Zhanga Y, Wua H, Chena C (2015) The use of cheap polyaniline and melamine co-modified carbon nanotubes as active and stable catalysts for oxygen reduction reaction in alkaline medium. Electrochim Acta 160:357–362. doi: 10.1016/j.electacta.2015.02.053 CrossRefGoogle Scholar
  41. 41.
    Wang Y, Wang Z, Wu X, Liu X, Li M (2016) Synergistic effect between strongly coupled CoAl layered double hydroxides and graphene for the electrocatalytic reduction of oxygen. Electrochim Acta 192:196–204. doi: 10.1016/j.electacta.2016.01.201 CrossRefGoogle Scholar
  42. 42.
    Demarconnay L, Coutanceau C, Léger JM (2008) Study of the oxygen electroreduction at nanostructured PtBi catalysts in alkaline medium. Electrochim Acta 53:3232–3241. doi: 10.1016/j.electacta.2007.07.006 CrossRefGoogle Scholar
  43. 43.
    El-Deab MS, El-Nowihy GH, Mohammad AM (2015) Synergistic enhancement of the electro-oxidation of methanol at tailor-designed nanoparticle-based CoOx/MnOx/Pt ternary catalysts. Electrochim Acta 165:402–409. doi: 10.1016/j.electacta.2015.02.231 CrossRefGoogle Scholar
  44. 44.
    Liu Y, Higgins DC, Wu J, Fowler M, Chen Z (2013) Cubic spinel cobalt oxide/multi-walled carbon nanotube composites as an efficient bifunctionalelectrocatalyst for oxygen reaction. Electrochem Commun 3:125–129. doi: 10.1016/j.elecom.2013.05.035 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Ahmed Zaki Al-Hakemy
    • 1
  • Abu Bakr Ahmed Amine Nassr
    • 2
    • 3
  • Ahmed Hosny Naggar
    • 1
  • Mohamed Salaheldin Elnouby
    • 2
  • Hesham Mohamed Abd El-Fattah Soliman
    • 2
  • Mahmoud Ahmed Taher
    • 1
  1. 1.Chemistry Department, Faculty of ScienceAl-Azhar UniversityAssiutEgypt
  2. 2.Advanced Technology and New Materials Research Institute (ATNMRI)City of Scientific Research and Technological Application (SRTA-City)New Borg Al-Arab CityEgypt
  3. 3.Electrochemistry Group, School of ChemistryUniversity of SouthamptonSouthamptonUK

Personalised recommendations