Skip to main content
Log in

Three-dimensional CFD modeling of direct ethanol fuel cells: evaluation of anodic flow field structures

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Mathematical modeling and simulation are widely applied to investigate the fluid dynamics properties in fuel cells. Flow field design determines how effective the fuel is distributed along the diffusion layers and the catalyst. The computational fluid dynamics modeling approach allows an effective investigation of different flow field designs through examining concentration profiles in the porous regions, velocity profiles, and pressure drop in the flow channels of fuel cells. In this work, mathematical models considering both complete oxidation of ethanol and partial oxidation with by-products in Pt-based catalysts were implemented in a three-dimensional geometry using the ANSYS CFX software. Laminar flow in the flow channels, steady-state operation, isothermal, and non-isothermal conditions was assumed. Commonly used flow field designs were investigated: serpentine, double serpentine, parallel, interdigitated, and spot. The interdigitated flow field design presented the best results in the isothermal simulations, whereas in the non-isothermal simulations the double serpentine presented the best results.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abdullah S, Kamarudin S, Hasran U, Masdar M, Daud W (2014) Modeling and simulation of a direct ethanol fuel cell: an overview. J Power Sour 262:401–406. doi:10.1016/j.jpowsour.2014.03.105

    Article  CAS  Google Scholar 

  2. An L, Chai Z, Zeng L, Tan P, Zhao T (2013) Mathematical modeling of alkaline direct ethanol fuel cells. Int J Hydrog Energy 8(32):1–9. doi:10.1016/j.ijhydene.2013.08.080

    Google Scholar 

  3. Andreadis G, Tsiakaras P (2006) Ethanol crossover and direct ethanol PEM fuel cell performance modeling and experimental validation. Chem Eng Sci 61(22):7497–7508. doi:10.1016/j.ces.2006.08.028

    Article  CAS  Google Scholar 

  4. Andreadis G, Song SQ, Tsiakaras P (2006) Direct ethanol fuel cell anode simulation model. J Power Sour 157(2):657–665. doi:10.1016/j.jpowsour.2005.12.040

    Article  CAS  Google Scholar 

  5. Dos Anjos DM (2007) Preparação, caracterização e estudo eletroquímico de ligas pt/m e pt/m/m1 (m,m1=mo, sn, ru, os e w) para eletrooxidação de etanol com aplicações em defc. PhD thesis, Universidade de São Paulo, São Paulo

  6. Ekdharmasuit P, Therdthianwong A, Therdthianwong S (2013) Anode structure design for generating high stable power output for direct ethanol fuel cells. Fuel 113:69–76. doi:10.1016/j.fuel.2013.05.046

    Article  CAS  Google Scholar 

  7. Heysiattalab S, Shakeri M, Safari M, Keikha M (2011) Investigation of key parameters influence on performance of direct ethanol fuel cell (DEFC). J Ind Eng Chem 17(4):727–729. doi:10.1016/j.jiec.2011.05.037

    Article  CAS  Google Scholar 

  8. Hitmi H, Belgsir E, Léger JM, Lamy C, Lezna R (1994) A kinetic analysis of the electro-oxidation of ethanol at a platinum electrode in acid medium. Electrochimica Acta 39(3):407–415

    Article  CAS  Google Scholar 

  9. James DD, Pickup PG (2010) Effects of crossover on product yields measured for direct ethanol fuel cells. Electrochimica Acta 55(11):3824–3829. doi:10.1016/j.electacta.2010.02.007

    Article  CAS  Google Scholar 

  10. Kamarudin M, Kamarudin S, Masdar M, Daud W (2013) Review: direct ethanol fuel cells. Int J Hydrog Energy 38(22):9438–9453. doi:10.1016/j.ijhydene.2012.07.059

    Article  CAS  Google Scholar 

  11. Kauranen PS, Skou E, Munk J (1996) Kinetics of methanol oxidation on carbon-supported Pt and Pt + Ru catalysts. J Electroanal Chem 404(1):1–13. doi:10.1016/0022-0728(95)04298-9

    Article  Google Scholar 

  12. Kianimanesh A, Yu B, Yang Q, Freiheit T, Xue D, Park S (2012) Investigation of bipolar plate geometry on direct methanol fuel cell performance. Int J Hydrog Energy 37(23):18403–18411. doi:10.1016/j.ijhydene.2012.08.128

    Article  CAS  Google Scholar 

  13. Lamy C, Rousseau S, Belgsir EM, Coutanceau C (2004) Recent progress in the direct ethanol fuel cell: development of new platinum-tin electrocatalysis. Electrochimica Acta 49(22–23):3901–3908. doi:10.1016/j.electacta.2004.01.078

    Article  CAS  Google Scholar 

  14. Nordlund J, Lindbergh G (2002) A model for the porous direct methanol fuel cell anode. J Electrochem Soc 149:A1107–A1113

    Article  CAS  Google Scholar 

  15. Pramanik H, Basu S (2010) Modeling and experimental validation of overpotentials of a direct ethanol fuel cell. Chem Eng Process 49(7):635–642. doi:10.1016/j.cep.2009.10.015

    Article  CAS  Google Scholar 

  16. Purgato F, Pronier S, Olivi P, de Andrade AR, Léger J, Tremiliosi-Filho G, Kokoh K (2012) Direct ethanol fuel cell: electrochemical performance at 90C on Pt and PtSn/C electrocatalysts. J Power Sour 198:95–99. doi:10.1016/j.jpowsour.2011.09.060

    Article  CAS  Google Scholar 

  17. Qian W, Wilkinson DP, Shen C, Wang H, Zhang J (2006) Architecture for portable direct liquid fuel cells. J Power Sour 154(1):202–213

    Article  CAS  Google Scholar 

  18. Rousseau S, Coutanceau C, Lamy C, Léger JM (2006) Direct ethanol fuel cell (DEFC): electrical performances and reaction products distribution under operating conditions with different platinum-based anodes. J Power Sour 158(1):18–24. doi:10.1016/j.jpowsour.2005.08.027

    Article  CAS  Google Scholar 

  19. Santamaria AD, Bachman J, Park W (2013) Design strategy for a polymer electrolyte membrane fuel cell flow-field capable of switching between parallel and interdigitated configurations. Int J Hydrog Energy 38(14):5807–5812. doi:10.1016/j.ijhydene.2013.01.084

    Article  CAS  Google Scholar 

  20. Song S, Wang Y, Shen P (2007) Thermodynamic and kinetic considerations for ethanol electrooxidation in direct ethanol fuel cells. Chin J Catal 28(9):752–754

    Article  CAS  Google Scholar 

  21. Sousa R, Marques Daniela DA, Tremiliosi-Filho G, Gonzalez ER, Coutanceau C, Sibert E, Leger JM, Kokoh KB (2008) Modeling and simulation of the anode in direct ethanol fuel cells. J Power Sour 180(1):283–293. doi:10.1016/j.jpowsour.2008.01.058

    Article  CAS  Google Scholar 

  22. Takahashi H, Sagihara M, Taguchi M (2014) Electrochemically reduced Pt oxide thin film as a highly active electrocatalyst for direct ethanol alkaline fuel cell. Int J Hydrog Energy 39(32):18424–18432. doi:10.1016/j.ijhydene.2014.09.038

    Article  CAS  Google Scholar 

  23. Wang SJ, Huo WW, Zou ZQ, Qiao YJ, Yang H (2011) Computational simulation and experimental evaluation on anodic flow field structures of micro direct methanol fuel cells. Appl Therm Eng 31(14—-15):2877–2884. doi:10.1016/j.applthermaleng.2011.05.013

    Article  CAS  Google Scholar 

  24. Xu C, Zhao TS (2007) A new flow field design for polymer electrolyte-based fuel cells. Electrochem Commun 9(3):497–503. doi:10.1016/j.elecom.2006.10.031

    Article  CAS  Google Scholar 

  25. Ye Q, Zhao TS, Xu C (2006) The role of under-rib convection in mass transport of methanol through the serpentine flow field and its neighboring porous layer in a DMFC. Electrochimica Acta 51(25):5420–5429. doi:10.1016/j.electacta.2006.02.021

    Article  CAS  Google Scholar 

  26. Zhao T, Xu C, Chen R, Yang W (2009) Mass transport phenomena in direct methanol fuel cells. Prog Energy Combust Sci 35(3):275–293. doi:10.1016/j.pecs.2009.01.001

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors greatly acknowledge the financial support from the Brazilian Ministry of Science, Technology and Innovation and the Conselho Nacional de Desenvolvimento Científico e Tecnológico for the execution of this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruy de Sousa Jr..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maia, L.K.K., Sousa Jr., R.d. Three-dimensional CFD modeling of direct ethanol fuel cells: evaluation of anodic flow field structures. J Appl Electrochem 47, 25–37 (2017). https://doi.org/10.1007/s10800-016-1013-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-1013-6

Keywords

Navigation