Journal of Applied Electrochemistry

, Volume 47, Issue 1, pp 125–132 | Cite as

Sub-zero temperature thermo-electrochemical energy harvesting system using a self-heating negative temperature coefficient CNT-vanadium oxide cathode

  • Muthukkumaran Karthikeyan
  • Aravindaraj G. Kannan
  • Sukkee Um
Short Communication
Part of the following topical collections:
  1. Electrochemical Processes


In this study, we report for the first time a simple method that directly converts heat into electrical energy at sub-zero ambient temperatures. The thermo-electrochemical cell was constructed with negative temperature coefficient (NTC) carbon nanotube-vanadium oxide (CNT-VO x ) self-heating cathode, which provided thermal energy through an induced Joule effect. The electrical energy was obtained by creating in situ temperature difference between the electrodes (ΔT) and with subsequent redox reactions. A decrease in the cell resistance with an increase in the ΔT, and enhanced electrical energy conversion through a charge-transfer mechanism (i.e., Faradaic redox reaction) was observed. In addition, the advantage of using NTC CNT-VO x cathode as a self-heating source at various ΔT (i.e., without the support of any external source) in a thermo-electrochemical system for sub-zero temperature energy conversion is presented.

Graphical Abstract


CNT-VOx Joule heating Thermo-electrochemical cell Thermo-electrical energy harvesting 


  1. 1.
    Zhao Y, Huang Y, Gao P, Chen H, Gonzalez-Cortes S, Xiao T (2016) Hydrogen from bottle-the magic of Pt catalysts for methanol reforming instantly start-up from cold weather. Int J Hydrog Energy 41(25):10719–10726CrossRefGoogle Scholar
  2. 2.
    Dallago E, Barnabei AL, Liberale A, Torelli G, Venchi G (2016) A 300-mV low-power management system for energy harvesting applications. IEEE Trans Power Electr 31(3):2273–2281CrossRefGoogle Scholar
  3. 3.
    Wang CY, Zhang G, Ge S, Xu T, Ji Y, Yang XG, Leng Y (2016) Lithium-ion battery structure that self-heats at low temperatures. Nature 529(7587):515–518CrossRefGoogle Scholar
  4. 4.
    Oh K, Won S, Ju H (2015) Numerical study of the effects of carbon felt electrode compression in all-vanadium redox flow batteries. Electrochim Acta 181:13–23CrossRefGoogle Scholar
  5. 5.
    Vining CB (2009) An inconvenient truth about thermoelectrics. Nat Mater 8(2):83–85CrossRefGoogle Scholar
  6. 6.
    Mancini T, Heller P, Butler B, Osborn B, Schiel W, Goldberg V, Buck R, Diver R, Andraka C, Moreno J (2003) Dish-stirling systems: an overview of development and status. J Sol Energy Eng 125(2):135–151CrossRefGoogle Scholar
  7. 7.
    Ujihara M, Carman GP, Lee DG (2007) Thermal energy harvesting device using ferromagnetic materials. Appl Phys Lett 91(9):093508CrossRefGoogle Scholar
  8. 8.
    Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488(7411):294–303CrossRefGoogle Scholar
  9. 9.
    Liu C, Neale ZG, Cao G (2015) Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater Today 19(2):109–123CrossRefGoogle Scholar
  10. 10.
    Aswal DK, Basu R, Singh A (2016) Key issues in development of thermoelectric power generators: high figure-of-merit materials and their highly conducting interfaces with metallic interconnects. Energy Convers Manag 114(15):50–67CrossRefGoogle Scholar
  11. 11.
    Kuzminskii YV, Zasukha VA, Kuzminskaya GY (1994) Thermoelectric effects in electrochemical systems. Nonconventional thermogalvanic cells. J Power Sources 52(2):231–242CrossRefGoogle Scholar
  12. 12.
    Quickenden TI, Mua YA (1995) Review of power generation in aqueous thermogalvanic cells. J Electrochem Soc 142(11):3985–3994CrossRefGoogle Scholar
  13. 13.
    Mancini T, Heller P, Butler B, Osborn B, Schiel W, GoldbergV Buck R, Diver R, Andraka C, Moreno J (2003) Dish-stirling systems: an overview of development and status. J Solar Energy Eng 125(2):135–151CrossRefGoogle Scholar
  14. 14.
    Gunawan A, Lin CH, Buttry DA, Mujica V, Taylor RA, Prasher RS, Phelan PE (2013) Liquid thermoelectrics: review of recent and limited new data of thermogalvanic cell experiments. Nanoscale Microscale Thermophys Eng 17(4):304–323CrossRefGoogle Scholar
  15. 15.
    Campbell JK, Sun L, Crooks RM (1999) Electrochemistry using single carbon nanotubes. J Am Chem Soc 121(15):3779–3780CrossRefGoogle Scholar
  16. 16.
    Niu S, Zhao M, Hu L, Zhang S (2008) Carbon nanotube-enhanced DNA biosensor for DNA hybridization detection using rutin-Mn as electrochemical indicator. Sens Actuators B Chem 10(1):200–205CrossRefGoogle Scholar
  17. 17.
    Zhang Y, Ma D, Wu J, Zhang Q, Xin Y, Bao N (2015) One-step preparation of CNTs/InVO4 hollow nanofibers by electrospinning and its photocatalytic performance under visible light. Appl Surf Sci 353(30):1260–1268CrossRefGoogle Scholar
  18. 18.
    Deng L, Ma Z, Li X, Fan G (2015) Preparation of graphene/vanadium oxide nanocomposite monolith and its electrochemical performance. Mater Res Bull 70(31):600–606CrossRefGoogle Scholar
  19. 19.
    Jung H, Um S (2011) An experimental feasibility study of vanadium oxide films on metallic bipolar plates for the cold start enhancement of fuel cell vehicles. Int J Hydrog Energy 36(24):15826–15837CrossRefGoogle Scholar
  20. 20.
    Jung H, Um S (2013) Electrical and thermal transport properties of vanadium oxide thin films on metallic bipolar plates for fuel cell applications. Int J Hydrog Energy 38(26):11591–11599CrossRefGoogle Scholar
  21. 21.
    Karthikeyan M, Um S (2016) Synthesis, characterization, and transport properties of single-layer pure and molybdenum-doped vanadium oxide thin films on metallic conductive substrates. Thin Solid Films 606(1):63–73CrossRefGoogle Scholar
  22. 22.
    Shindo K, Arakawa M, Hirai TJ (1998) Effect of non-graphitized carbon electrodes on the electrochemical characteristics of a thermocell with a Br 2/Br redox couple. J Power Sources 70(2):228–234CrossRefGoogle Scholar
  23. 23.
    Chen H, Cong TN, Yang W, Tan C, Li Y, Ding Y (2009) Progress in electrical energy storage system: a critical review. Prog Nat Sci 199(3):291–312CrossRefGoogle Scholar
  24. 24.
    Perera SD, Patel B, Nijem N, Roodenko K, Seitz O, Ferraris JP, Chabal YJ, Balkus KJ (2011) Vanadium oxide nanowire-carbon nanotube binder-free flexible electrodes for supercapacitors. Adv Energy Mater 1(5):936–945CrossRefGoogle Scholar
  25. 25.
    Peckham GD, McNaught IJ (2011) The variation of electrochemical cell potentials with temperature. J Chem Edu 88(6):782–783CrossRefGoogle Scholar
  26. 26.
    Bard AJ, Faulkner LR, Leddy J, Zoski CG (1980) Electrochemical methods: fundamentals and applications. Wiley, New YorkGoogle Scholar
  27. 27.
    Blanton TN, Majumdar D (2012) X-ray diffraction characterization of polymer intercalated graphite oxide. Powder Diffr 27(2):104–107CrossRefGoogle Scholar
  28. 28.
    Pop E, Mann D, Cao J, Wang Q, Goodson KE, Dai HJ (2005) Negative differential conductance and hot phonons in suspended nanotube molecular wires. Phys Rev Lett 95(15):155505CrossRefGoogle Scholar
  29. 29.
    Wang X, Zhang L, Lu Y, Dai H, Kato YK, Pop E (2007) Electrically driven light emission from hot single-walled carbon nanotubes at various temperatures and ambient pressures. Appl Phys Lett 91(26):261102CrossRefGoogle Scholar
  30. 30.
    Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum Publishers, New YorkCrossRefGoogle Scholar
  31. 31.
    Quickenden TI, Vernon CF (1986) Thermogalvanic conversion of heat to electricity. Sol Energy 36:63–72CrossRefGoogle Scholar
  32. 32.
    Romano MS, Razal JM, Antiohos D, Wallace G, Chen J (2015) Nano-carbon electrodes for thermal energy harvesting. J Nanosci Nanotechnol 15:1–14CrossRefGoogle Scholar
  33. 33.
    Qian W, Cao M, Xie F, Dong C (2016) thermo-electrochemical cells based on carbon nanotube electrodes by electrophoretic deposition. Nano-Micro Lett 1:1–7Google Scholar
  34. 34.
    Hu R, Cola BA, Haram N, Barisci JN, Lee S, Stoughton S, Wallace G, Too C, Thomas M, Gestos A, Cruz MED (2010) Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell. Nano Lett 10(3):838–846CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Multi Energy Transport Laboratory, School of Mechanical EngineeringHanyang UniversitySeongdong-guSouth Korea
  2. 2.Department of Chemical EngineeringHanyang UniversitySeongdong-guSouth Korea

Personalised recommendations