Journal of Applied Electrochemistry

, Volume 46, Issue 12, pp 1199–1209 | Cite as

SECM investigation of electrochemically synthesized polypyrrole from aqueous medium

  • A. El Jaouhari
  • D. Filotás
  • A. Kiss
  • M. Laabd
  • E. A. Bazzaoui
  • L. Nagy
  • G. Nagy
  • A. Albourine
  • J. I. Martins
  • R. Wang
  • M. Bazzaoui
Research Article
Part of the following topical collections:
  1. Sensors and Electrochemical Methods


The electrochemical behavior of polypyrrole (PPy)-coated carbon steel (CS) was investigated in aqueous NaCl solution by scanning electrochemical microscopy. Oxygen concentration and pH were monitored by placing Pt and Sb microelectrodes, respectively, over the CS sample surfaces while soaking them in corrosion media. The PPy layer provided anodic protection, as well as a physical barrier, against the corrosive effect. The ratio of these properties was dependent on the thickness of the coating. Electrosynthesis of PPy/CS was achieved in an aqueous solution of sodium tartrate and pyrrole using cyclic voltammetric and galvanostatic techniques. The coatings were characterized by X-ray photoelectron spectroscopy and scanning electron microscopy. The doping rate calculated from XPS spectra was estimated at 15 %. The corrosion protective extent of the coating was tested in 3 % NaCl solution using three different techniques: linear polarization, open circuit potential, and electrochemical impedance spectroscopy. PPy offered significant protection against corrosion, with the coating resistance decreasing as immersion time increased.

Graphical Abstract


SECM Electropolymerization Polypyrrole Aqueous medium Carbon steel Corrosion 



This work was supported by the MESRSFC and CNRST (Morocco) under Grant No PPR/30/2015 and cooperation agreements between Morocco and Hungary (CNRST/NIH) 1091/2014/CNR.


  1. 1.
    Binning G, Rohrer H, Gerber Ch, Weibel E (1982) Surface studies by scanning tunneling microscopy. Phys Rev Lett 49:57–61CrossRefGoogle Scholar
  2. 2.
    Engstrom RC, Weber M, Wunder DJ, Burgess R, Winquist S (1986) Measurements within the diffusion layer using a microelectrode prob. Anal Chem 58:844–848CrossRefGoogle Scholar
  3. 3.
    Liu HY, Fan FRF, Lin CW, Bard AJ (1986) Scanning electrochemical and tunneling ultramicro electrode microscope for high-resolution examination of electrode surfaces in solution. J Am Chem Soc 108:3838–3839CrossRefGoogle Scholar
  4. 4.
    Horrocks BR, Mirkin MV, Pierce DT, Bard AJ, Nagy G, Tóth K (1993) Scanning electrochemical microscopy. 19. Ion selective potentiometric microscopy. Anal Chem 65:1213–1224CrossRefGoogle Scholar
  5. 5.
    Wei C, Bard AJ, Nagy G, Tóth K (1995) Scanning ion selective potentiometric microscopy. Anal Chem 67:1346–1356CrossRefGoogle Scholar
  6. 6.
    Hasma PK, Dake B, Marti O, Gould SA, Prater CB (1989) The scanning ion conductance microscope. Science 243(4891):641–643CrossRefGoogle Scholar
  7. 7.
    Nagy G, Nagy L (2000) Scanning electrochemical microscopy: a new way of making electrochemical experiments, Fresenius. J Anal Chem 366:735–744CrossRefGoogle Scholar
  8. 8.
    Bard AJ, Mirkin MV (eds) (2001) Scanning electrochemical microscopy. Marcel Dekker, Inc, New YorkGoogle Scholar
  9. 9.
    Nagy G, Nagy L (2007) Electrochemical sensors developed for gathering microscale chemical information. Anal Lett 40:3–38CrossRefGoogle Scholar
  10. 10.
    Schuhmann W, Schulte A (2007) Scanning electrochemical microscopy. Single-cell microelectrochemistry. Angew Chem Int Ed 46:8760–8777CrossRefGoogle Scholar
  11. 11.
    Bard AJ, Li X, Zhan W (2006) Chemically imaging living cells by scanning electrochemical microscopy. Biosens Bioelectron 22:461–472CrossRefGoogle Scholar
  12. 12.
    Izquierdo J, Kiss A, Santana JJ, Nagy L, Bitter I, Isaacs HS, Nagy G, Souto RM (2013) Development of Mg2+ ion-selective microelectrodes for potentiometric scanning electrochemical microscopy monitoring of galvanic corrosion processes. J Electrochem Soc 160(9):C451–C459CrossRefGoogle Scholar
  13. 13.
    Souto RM, Kiss A, Izquierdo J, Nagy L, Bitter I, Nagy G (2013) Spatially resolved imaging of distribution on corroding magnesium-based materials exposed to aqueous environments by SECM. Electrochem Commun 26:25–28CrossRefGoogle Scholar
  14. 14.
    Zhang H, Zhuang J (2003) Research development and industrial application of heat pipe technology in China. Appl Therm Eng 23:1067CrossRefGoogle Scholar
  15. 15.
    Liu SG, Dong SS, Yang F, Li L, Hu B, Xiao FH, Chen Q, Liu HS (2014) Application of quenching–partitioning–tempering process and modification to a newly designed ultrahigh carbon steel. Mater Des 56:37CrossRefGoogle Scholar
  16. 16.
    Lin B, Wang X (2015) Carbon emissions from energy intensive industry in China: evidence from the iron and steel industry. Renew Sustain Energy Rev 47:746CrossRefGoogle Scholar
  17. 17.
    Panossian Z, Almeida NL, Sousa RMF, Pimenta GS, Marques LBS (2012) Corrosion of carbon steel pipes and tanks by concentrated sulfuric acid: a review. Corros Sci 58:1CrossRefGoogle Scholar
  18. 18.
    Finšgar M, Jackson J (2014) Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: a review. Corros Sci 86:17CrossRefGoogle Scholar
  19. 19.
    Liu Y, Feng Z, Walton J, Thompson GE, Skeldon P, Zhou X (2013) Crack-free sol-gel coatings for protection of AA1050 aluminium alloy. Surf Interface Anal 45:1446CrossRefGoogle Scholar
  20. 20.
    Twite RL, Bierwagen GP (1998) Review of alternatives to chromate for corrosion protection of aluminum aerospace alloys. Prog Org Coat 33:91CrossRefGoogle Scholar
  21. 21.
    Oliver R, Muñoz A, Ocampo C, Alemán C, Armelin E, Estrany F (2006) Electrochemical characteristics of copolymers electrochemically synthesized from N-methylpyrrole and 3,4-ethylenedioxythiophene on steel electrodes: comparison with homopolymers. Chem Phys 328:299CrossRefGoogle Scholar
  22. 22.
    Wei H, Wang Y, Guo J, Shen NZ, Jiang D, Zhang X, Yan X, Zhu J, Wang Q, Shao L, Lin H, Wei S, Guo Z (2015) Advanced micro/nanocapsules for self-healing smart anticorrosion coatings. J Mater Chem A 3:469–480CrossRefGoogle Scholar
  23. 23.
    Clark WJ, Ramsey JD, McCreery RL, Frankel GS (2002) A galvanic corrosion approach to investigating chromate effects on aluminum alloy 2024-T3. J Electrochem Soc 149:B179CrossRefGoogle Scholar
  24. 24.
    Bazzaoui M, Martins JI, Bazzaoui EA, Albourine A, Martins L (2014) Corrosion protection of stainless steel plates in fuel cells environment by conducting polymers. Mater Corros 65:67CrossRefGoogle Scholar
  25. 25.
    Bai X, Tran TH, Yu D, Vimalanandan A, Hu X, Rohwerder M (2015) Novel conducting polymer based composite coatings for corrosion protection of zinc. Corros Sci 95:110CrossRefGoogle Scholar
  26. 26.
    Bazzaoui M, Bazzaoui EA, Martins L, Martins JI (2002) Electrochemical synthesis of adherent polypyrrole films on zinc electrodes in acidic and neutral organic media. Synth Met 128:103CrossRefGoogle Scholar
  27. 27.
    Duran B, Bereket G, Turhan MC, Virtanen S (2011) Poly(N-methyl aniline) thin films on copper: synthesis, characterization and corrosion protection. Thin Solid Films 519:5868–5874CrossRefGoogle Scholar
  28. 28.
    Ozyılmaz AT, Erbil M, Yazıcı B (2006) The corrosion behaviours of polyaniline coated stainless steel in acidic solutions. Thin Solid Films 496:431CrossRefGoogle Scholar
  29. 29.
    Kamaraj K, Karpakam V, Azim SS, Sathiyanarayanan S (2012) Electropolymerised polyaniline films as effective replacement of carcinogenic chromate treatments for corrosion protection of aluminium alloys. Synth Met 162:536–542CrossRefGoogle Scholar
  30. 30.
    Sheng N, Ohtsuka T (2012) Preparation of conducting poly-pyrrole layer on zinc coated Mg alloy of AZ91D for corrosion protection. Prog Org Coat 75:59CrossRefGoogle Scholar
  31. 31.
    Annibaldi V, Rooney AD, Breslin CB (2012) Corrosion protection of copper using polypyrrole electrosynthesised from a salicylate solution. Corros Sci 59:179–185CrossRefGoogle Scholar
  32. 32.
    Pruna A, Pilan L (2012) Electrochemical study on new polymer composite for zinc corrosion protection. Compos B 43:3251CrossRefGoogle Scholar
  33. 33.
    Biallozor S, Kupniewska A (2005) Conducting polymers electrodeposited on active metals. Synth Met 155:443–449CrossRefGoogle Scholar
  34. 34.
    Hu J, Zhu H, Ma Y, Yi T, Mao X, Lin A, Gan F (2011) Corrosion protection of stainless steel by separate polypyrrole electrode in acid solutions. Mater Corros 62:68–73CrossRefGoogle Scholar
  35. 35.
    Rohwerder M, Michalik A (2007) Conducting polymers for corrosion protection: what makes the difference between failure and success? Electrochim Acta 53:1300CrossRefGoogle Scholar
  36. 36.
    Kiss A, Nagy G (2015) Deconvolution of potentiometric SECM images recorded with high scan rate. Electrochim Acta 163:303–309CrossRefGoogle Scholar
  37. 37.
    Rossi A, Elsener B, Hahner G, Textor M, Spencer ND (2000) XPS, AES and ToF-SIMS investigation of surface films and the role of inclusions on pitting corrosion in austenitic stainless steels. Surf Interface Anal Surf 29:460–467CrossRefGoogle Scholar
  38. 38.
    Delpeux S, Beguin F, Benoit R, Erre R, Manolova N, Rashkov I (1998) Fullerene core star-like polymers—1. Preparation from fullerenes and monoazidopolyethers. Eur Polym J 34:905–915CrossRefGoogle Scholar
  39. 39.
    Brion D (1980) Etude par spectroscopie de photoelectrons de la degradation superficielle de FeS2, CuFeS2, ZnS et PbS a l’air et dans l’eau. Appl Surf Sci 5:133CrossRefGoogle Scholar
  40. 40.
    Beccaria AM, Poggi G, Castello G (1995) Influence of passive film composition and sea water pressure on resistance to localised corrosion of some stainless steels in sea water. Br Corros J 30:283CrossRefGoogle Scholar
  41. 41.
    Barr TL (1978) An ESCA study of the termination of the passivation of elemental metals. J Phys Chem 82:1801–1810CrossRefGoogle Scholar
  42. 42.
    Ferreira CA, Aeiyach S, Delamar M, Lacaze PC (1990) Electropolymerization of pyrrole on iron electrodes: influence of solvent and electrolyte on the nature of the deposits. J Electroanal Chem 284:351CrossRefGoogle Scholar
  43. 43.
    Hasik M, Bernasik A, Drelinkiewicz A, Kowalski K, Wenda E, Camra J (2002) XPS studies of nitrogen-containing conjugated polymers–palladium systems. Surf Sci 507–510:916–921CrossRefGoogle Scholar
  44. 44.
    Guernion N, Ewen RJ, Pihlainen K, Ratcliffe NM, Teare GC (2002) The fabrication and characterisation of a highly sensitive polypyrrole sensor and its electrical responses to amines of differing basicity at high humidities. Synth Met 126:301CrossRefGoogle Scholar
  45. 45.
    Aeiyach S, Zaid B, Lacaze PC (1999) A one-step electrosynthesis of PPy films on zinc substrates by anodic polymerization of pyrrole in aqueous solution. Electrochim Acta 44:2889CrossRefGoogle Scholar
  46. 46.
    Bazzaoui M, Martins L, Bazzaoui EA, Martins JI (2002) New single-step electrosynthesis process of homogeneous and strongly adherent polypyrrole films on iron electrodes in aqueous medium. Electrochim Acta 47:2953CrossRefGoogle Scholar
  47. 47.
    Mobin M, Tanveer N (2011) Corrosion behavior of chemically deposited single and bi-layered conducting polymer coatings on mild steel, Portugaliae. Electrochim Acta 29:139–154CrossRefGoogle Scholar
  48. 48.
    Hien NTL, Garcia B, Pailleret A, Deslouis C (2005) Role of doping ions in the corrosion protection of iron by polypyrrole films. Electrochim Acta 50:1747CrossRefGoogle Scholar
  49. 49.
    Zeybek B, Pekmez NÖ, Kiliç E (2011) Electrochemical synthesis of bilayer coatings of poly(N-methylaniline) and polypyrrole on mild steel and their corrosion protection performances. Electrochim Acta 56:9277CrossRefGoogle Scholar
  50. 50.
    Jiang Q, Miao Q, Tong F, Xu Y, Ren BL, Liu ZM, Yao ZJ (2014) Electrochemical corrosion behavior of arc sprayed Al–Zn–Si–RE coatings on mild steel in 3.5 % NaCl solution. Trans Nonferr Met Soc China 24:2713CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • A. El Jaouhari
    • 1
  • D. Filotás
    • 2
    • 3
  • A. Kiss
    • 2
  • M. Laabd
    • 1
  • E. A. Bazzaoui
    • 4
  • L. Nagy
    • 2
    • 3
  • G. Nagy
    • 2
    • 3
  • A. Albourine
    • 1
  • J. I. Martins
    • 5
  • R. Wang
    • 6
  • M. Bazzaoui
    • 1
    • 5
  1. 1.Laboratoire des Matériaux et Environnement (LME), Département de Chimie, Faculté des SciencesUniversité Ibn ZohrAgadirMorocco
  2. 2.Department of General and Physical Chemistry, Faculty of SciencesUniversity of PécsPécsHungary
  3. 3.János Szentágothai Research CenterUniversity of PécsPécsHungary
  4. 4.Laboratoire de Chimie des Matériaux (LCM), Département de Chimie, Faculté des SciencesUniversité Mohammed IerOujdaMorocco
  5. 5.Departamento de Engenharia Química, Faculdade de EngenhariaUniversidade do PortoPortoPortugal
  6. 6.Department of Mechanical Systems Engineering, Faculty of EngineeringHiroshima Institute of TechnologyHiroshimaJapan

Personalised recommendations