Skip to main content

Electrochemical deposition and characterization of polypyrrole in electrolyte based on pyrrolidinium hydrogenosulfate protic ionic liquid

Abstract

In this work, we investigated the electrochemical deposition of polypyrrole (Ppy) in an electrolyte containing the pyrrolidinium hydrogenosulfate [Pyrr][HSO4] protic ionic liquid. Herein, the Ppy films were prepared by sequenced and by continuous galvanostatic deposition methods. Cyclic voltammetry (CV) and electrochemical quartz crystal microbalance techniques were further used to investigate, in each case, the polymer growth, as well as, the involved doping and dedoping processes. Additionally, atomic force microscopy, fourier transform infrared spectroscopy, CV, and electrochemical impedance spectroscopy measurements were conducted to investigate the morphology and electrochemical properties of the formed Ppy films. Similar investigations were also conducted by using the conventional aqueous electrolyte (i.e., aqueous solution containing 1 mol dm−3 of Na2SO4) to assess then the performance of the pyrrolidinium hydrogenosulfate as a medium for the electrochemical deposition of Ppy. Based on this work, we observed that the properties of Ppy, such as the capacitance, morphology, and microstructure are strongly affected by the electrolyte formulation and by the deposition technique used. Best properties of Ppy were obtained by using the sequenced galvanostatic deposition in [Pyrr][HSO4]-based electrolyte.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Beaujuge PM, Reynolds JR (2010) Color control in π-conjugated organic polymers for use in electrochromic devices. Chem Rev 110:268–320. doi:10.1021/cr900129a

    CAS  Article  Google Scholar 

  2. Nambiar S, Yeow JTW (2011) Conductive polymer-based sensors for biomedical applications. Biosens Bioelectron 26:1825–1832. doi:10.1016/j.bios.2010.09.046

    CAS  Article  Google Scholar 

  3. Otero TF, Martinez JG, Arias-Pardilla J (2012) Biomimetic electrochemistry from conducting polymers. A review: artificial muscles, smart membranes, smart drug delivery and computer/neuron interfaces. Electrochim Acta 84:112–128. doi:10.1016/j.electacta.2012.03.097

    CAS  Article  Google Scholar 

  4. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12. doi:10.1016/j.jpowsour.2010.06.084

    CAS  Article  Google Scholar 

  5. Doblhofer K, Rajeshwar K (1998) In: Skotheim TA, Elsenbaumer RL, Reynolds JR (eds) Handbook of Conducting Polymers, 2nd edn. Marcel Dekker, New York, p 531

    Google Scholar 

  6. Genies EM, Bidan G, Diaz AF (1983) Spectroelectrochemical study of polypyrrole films. J Electroanal Chem Interfacial Electrochem 149:101–113. doi:10.1016/S0022-0728(83)80561-0

    CAS  Article  Google Scholar 

  7. Waltman RJ, Bargon J (1986) Electrically conducting polymers: a review of the electropolymerization reaction, of the effects of chemical structure on polymer film properties, and of applications toward technology. Can J Chem 64:76–95. doi:10.1139/v86-015

    CAS  Article  Google Scholar 

  8. John R, Wallace GG (1991) The use of microelectrodes to probe the electropolymerization mechanism of heterocyclic conducting polymers. J Electroanal Chem Interfacial Electrochem 306:157–167. doi:10.1016/0022-0728(91)85228-H

    CAS  Article  Google Scholar 

  9. Sadki S, Schottland P, Brodie N, Sabouraud G (2000) The mechanisms of pyrrole electropolymerization. Chem Soc Rev 29:283–293. doi:10.1039/A807124A

    Article  Google Scholar 

  10. Zhang J, Kong JB, Li H, Luo Y-C, Kang L (2010) Synthesis of polypyrrole film by pulse galvanostatic method and its application as supercapacitor electrode materials. J Mater Sci 45:1947–1954. doi:10.1007/s10853-009-4186-0

    CAS  Article  Google Scholar 

  11. Carquigny S, Segut O, Lakard B, Lallemand F, Fievet P (2008) Effect of electrolyte solvent on the morphology of polypyrrole films: application to the use of polypyrrole in pH sensors. Synth Met 158:453–461. doi:10.1016/j.synthmet.2008.03.010

    CAS  Article  Google Scholar 

  12. Zhang X, Wang S, Lu S, Su J, He T (2014) Influence of doping anions on structure and properties of electro-polymerized polypyrrole counter electrodes for use in dye-sensitized solar cells. J Power Sources 246:491–498. doi:10.1016/j.jpowsour.2013.07.098

    CAS  Article  Google Scholar 

  13. Lei J, Martin CR (1992) Effect of synthesis temperature on the structure, doping level and charge-transport properties of polypyrrole. Synth Met 52:227–239. doi:10.1016/0379-6779(92)90310-F

    Article  Google Scholar 

  14. Patois T, Lakard B, Monney S, Roizard X, Fievet P (2011) Characterization of the surface properties of polypyrrole films: influence of electrodeposition parameters. Synth Met 161:2498–2505. doi:10.1016/j.synthmet.2011.10.003

    CAS  Article  Google Scholar 

  15. Viau L, Hihn JY, Lakard S, Moutarlier V, Flaud V, Lakard B (2014) Full characterization of polypyrrole thin films electrosynthesized in room temperature ionic liquids, water or acetonitrile. Electrochim Acta 137:298–310. doi:10.1016/j.electacta.2014.05.143

    CAS  Article  Google Scholar 

  16. Mallouki M, Tran-Van F, Sarrazin C, Chevrot C, Fauvarque JF (2009) Electrochemical storage of polypyrrole-Fe2O3 nanocomposites in ionic liquids. Electrochim Acta 54:2992–2997. doi:10.1016/j.electacta.2008.12.018

    CAS  Article  Google Scholar 

  17. Deepa M, Ahmad S (2008) Polypyrrole films electropolymerized from ionic liquids and in a traditional liquid electrolyte: a comparison of morphology and electro-optical properties. Eur Polym J 44:3288–3299. doi:10.1016/j.eurpolymj.2008.07.045

    CAS  Article  Google Scholar 

  18. Lagoutte S, Aubert P-H, Tran-Van F, Sallenave X, Laffaiteur C, Sarrazin C, Chevrot C (2013) Electrochemical and optical properties of poly(3, 4-dimethylthiophene) and its copolymers with 3-methylthiophene in ionic liquids media. Electrochim Acta 106:13–22. doi:10.1016/j.electacta.2013.05.030

    CAS  Article  Google Scholar 

  19. Pringle JM, Efthimiadis J, Howlett PC, Efthimiadis J, MacFarlane DR, Chaplin AB, Hall SB, Officer DL, Wallace GG, Forsyth M (2004) Electrochemical synthesis of polypyrrole in ionic liquids. Polymer 45:1447–1453. doi:10.1016/j.polymer.2004.01.006

    CAS  Article  Google Scholar 

  20. Tsunashima K, Matsubayashi T, Ono Y, Matsumiya M (2014) Electropolymerization of pyrrole in a bis(fluorosulfonyl)amide-based ionic liquid. ECS Electrochem Lett 3:G1–G4. doi:10.1149/2.001401eel

    CAS  Article  Google Scholar 

  21. Fernandez RA, Benedetti TM, Torresi RM (2015) Comparative electrochemical performance of electrodeposited polypyrrole in protic and aprotic ionic liquids. J Electroanal Chem 737:23–29. doi:10.1016/j.jelechem.2014.05.020

    CAS  Article  Google Scholar 

  22. Fang Y, Liu J, Yu DJ, Wicksted JP, Kalkan K, Topal CO, Flanders BN, Wu J, Li J (2010) Self-supported supercapacitor membranes: polypyrrole-coated carbon nanotube networks enabled by pulsed electrodeposition. J Power Sources 195:674–679. doi:10.1016/j.jpowsour.2009.07.033

    CAS  Article  Google Scholar 

  23. Lagoutte S, Aubert PH, Pinault M, Tran-Van F, Mayne-L’Hermite M, Chevrot C (2014) Poly (3-methylthiophene)/vertically aligned multi-walled carbon nanotubes: electrochemical synthesis, characterizations and electrochemical storage properties in ionic liquids. Electrochim Acta 130:754–765. doi:10.1016/j.electacta.2014.03.097

    CAS  Article  Google Scholar 

  24. Anouti M, Caillon-Caravanier M, Dridi Y, Galiano H, Lemordant D (2008) Synthesis and characterization of new pyrrolidinium based protic ionic liquids. Good and superionic liquids. J Phys Chem B 112:13335–13343. doi:10.1021/jp805992b

    CAS  Article  Google Scholar 

  25. Marchesi LFQP, Simoes FR, Pocrifkat LA, Pereira EC (2011) Investigation of polypyrrole degradation using electrochemical impedance spectroscopy. J Phys Chem B 115:9570–9575. doi:10.1021/jp2041263

    CAS  Article  Google Scholar 

  26. Taberna PL, Simon P, Fauvarque JF (2003) Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J Electrochem Soc 150:A292–A300. doi:10.1149/1.1543948

    CAS  Article  Google Scholar 

  27. Sauerbrey G (1959) Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z Phys 155:206–222. doi:10.1007/BF01337937

    CAS  Article  Google Scholar 

  28. Scheinder O, Bund A, Ispas A, Borissenko N, Zein El Abedin S, Endres F (2005) An EQCM study of the electropolymerization of benzene in an ionic liquid and ion exchange characteristics of the resulting polymer film. J Phys Chem B 109:7159–7168. doi:10.1021/jp044892r

    Article  Google Scholar 

  29. Maia G, Torresi RM, Ticianelli EA, Nart FC (1996) Charge compensation dynamics in the redox processes of polypyrrole-modified electrodes. J Phys Chem 100:15190–15916. doi:10.1021/jp9607780

    Article  Google Scholar 

  30. Tian B, Zerbi G (1990) Lattice dynamics and vibrational spectra of polypyrrole. J Chem Phys 92:3886–3891. doi:10.1063/1.457794

    CAS  Article  Google Scholar 

  31. Davidson RG, Turner TG (1995) An IR spectroscopic study of the electrochemical reduction of polypyrrole doped with dodecylsulfate anion. Synth Met 72:121–128. doi:10.1016/0379-6779(94)02332-S

    CAS  Article  Google Scholar 

  32. Kim HS, Park DH, Lee YB, Kim DC, Kim J, Joo J (2007) Doped and de-doped polypyrrole nanowires by using a BMIMPF6 ionic liquid. Synth Met 157:910–913. doi:10.1016/j.synthmet.2007.09.008

    CAS  Article  Google Scholar 

  33. Tian B, Zerbi G (1990) Lattice dynamics and vibrational spectra of pristine and doped polypyrrole: effective conjugation coordinate. J Chem Phys 92:3892–3898. doi:10.1063/1.457795

    CAS  Article  Google Scholar 

  34. Ghamouss F, Brugère A, Chellachamy AA, Schmaltz B, Luais E, Tran-Van F (2013) Novel glycerol assisted synthesis of polypyrrole nanospheres and its electrochemical properties. Synth Met 168:9–15. doi:10.1016/j.synthmet.2013.02.005

    CAS  Article  Google Scholar 

  35. Ouyang J, Li Y (1997) Effect of electrolyte solvent on the conductivity and structure of as-prepared polypyrrole films. Polymer 38:1971–1976. doi:10.1016/S0032-3861(96)00749-5

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fouad Ghamouss.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Porcher, M., Esnault, C., Tran-Van, F. et al. Electrochemical deposition and characterization of polypyrrole in electrolyte based on pyrrolidinium hydrogenosulfate protic ionic liquid. J Appl Electrochem 46, 1133–1145 (2016). https://doi.org/10.1007/s10800-016-0989-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-0989-2

Keywords

  • Polypyrrole
  • Protic ionic liquid
  • Electrochemical polymerization
  • Capacitance