Advertisement

Journal of Applied Electrochemistry

, Volume 46, Issue 7, pp 745–753 | Cite as

Enhancement of the electrocatalytic oxygen reduction reaction on Pd3Pb ordered intermetallic catalyst in alkaline aqueous solutions

  • Arockiam John Jeevagan
  • Takao Gunji
  • Fūma Ando
  • Toyokazu Tanabe
  • Shingo Kaneko
  • Futoshi Matsumoto
Research Article
Part of the following topical collections:
  1. Fuel cells

Abstract

Enhancement of the oxygen reduction reaction (ORR) was examined with Pd3Pb ordered intermetallic nanoparticles (NPs) supported on titania (Pd3Pb/TiO2). The Pd3Pb/TiO2 catalyst was synthesized by a conventional wet chemical method with Pd and Pb ion precursors, a reducing agent and TiO2 powder under ambient temperature. X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy measurements indicated the formation of the ordered intermetallic phase of Pd3Pb in the NP form on the TiO2 surface. Electrochemical measurements showed that the Pd3Pb/TiO2 catalyst markedly enhanced the ORR in an alkaline environment due to the unique surface of Pd3Pb NPs and the strong interaction between Pd3Pb and TiO2 compared with TiO2-supported Pd, Pt, and PtPb NPs. The onset potential of Pd3Pb/TiO2 was shifted toward a higher potential by 110–150 mV compared with Pd/TiO2, PtPb/TiO2, and Pt/TiO2.

Graphical Abstract

Keywords

Electrocatalysis Oxygen reduction reaction Ordered intermetallic phase Alkaline media 

References

  1. 1.
    Liu ZL, Zhao B, Guo CL, Sun Y, Shi Y, Yang HY, Li Z (2010) J Colloid Interface Sci 351:233–238CrossRefGoogle Scholar
  2. 2.
    Chen DJ, Zhou ZY, Wang Q, Xiang DM, Tian N, Sun SG (2010) Chem Commun 46:4252–4254CrossRefGoogle Scholar
  3. 3.
    Wu G, Mack NH, Gao W, Ma S, Zhong R, Han J, Baldwin JK, Zelenay P (2012) ACS Nano 6:9764–9776CrossRefGoogle Scholar
  4. 4.
    Debe MK (2012) Nature 486:43–51CrossRefGoogle Scholar
  5. 5.
    Liang YY, Li YG, Wang HL, Zhou JG, Wang J, Regier T, Dai H (2011) J Nat Mater 10:780–786CrossRefGoogle Scholar
  6. 6.
    Cheng FY, Shen JA, Peng B, Pan YD, Tao ZL, Chen J (2011) Nat Chem 3:79–84CrossRefGoogle Scholar
  7. 7.
    Hong JW, Kang SW, Choi BS, Kim D, Lee SB, Han SW (2012) ACS Nano 6:2410–2419CrossRefGoogle Scholar
  8. 8.
    Zhou RF, Jaroniec M, Qiao SZ (2015) Chem Cat Chem 7:3808–3817Google Scholar
  9. 9.
    Polarz S (2011) Adv Funct Mater 21:3214CrossRefGoogle Scholar
  10. 10.
    Lee JS, Park GS, Lee HI, Kim ST, Cao RG, Liu ML, Cho J (2011) Nano Lett 11:5362–5366CrossRefGoogle Scholar
  11. 11.
    Zhang Z, More KL, Sun K, Wu Z, Li W (2011) Chem Mater 23:1570–1577CrossRefGoogle Scholar
  12. 12.
    Sekol RC, Li X, Cohen P, Doubek G, Carmo M, Taylor AD (2013) Appl Catal B 138:285–293CrossRefGoogle Scholar
  13. 13.
    Shim JH, Kim J, Lee C, Lee Y (2011) Chem Mater 23:4694–4700CrossRefGoogle Scholar
  14. 14.
    Sun W, Hsu A, Chen R (2011) J Power Sources 196:4491–4498CrossRefGoogle Scholar
  15. 15.
    Antolini E (2009) Energy Environ Sci 2:915–931CrossRefGoogle Scholar
  16. 16.
    Lu Y, Jiang Y, Gao X, Wang X, Chen W (2014) J Am Chem Soc 136:11687–11697CrossRefGoogle Scholar
  17. 17.
    Wang D, Lu S, Jiang S (2010) Chem Commun 46:2058CrossRefGoogle Scholar
  18. 18.
    Wang M, Zhang W, Wang J, Wexler D, Poynton SD, Slade RCT, Liu H, Jensen BW, Kerr R, Shi D, Chen J (2013) ACS Appl Mater Interfaces 5:12708–12715CrossRefGoogle Scholar
  19. 19.
    Kang YS, Choi KH, Ahn D, Lee MJ, Baik J, Chung DY, Kim MJ, Minhyoung L, Kim SY, Shin H, Lee KU, Sung YE (2016) J Power Sources 303:234–242CrossRefGoogle Scholar
  20. 20.
    Wei YC, Liu CW, Wang KW (2011) Chem Commun 47:11927–11929CrossRefGoogle Scholar
  21. 21.
    Chen L, Guo H, Fujita T, Hirata A, Zhang W, Inove A, Chen M (2011) Adv Funct Mater 21:4364–4370CrossRefGoogle Scholar
  22. 22.
    Wu J, Shan S, Luo J, Joseph P, Petkov P, Zhong CJ (2015) ACS Appl Mater Interfaces 7(46):25906–25913CrossRefGoogle Scholar
  23. 23.
    Tang W, Zhang L, Henkelman G (2011) J Phys Chem Lett 2:1328–1331CrossRefGoogle Scholar
  24. 24.
    Yin S, Cai M, Wang C, Shen PS (2011) Energy Environ Sci 4:558–563CrossRefGoogle Scholar
  25. 25.
    Wang D, Xin HL, Wang H, Yu Y, Rus E, Muller DA, DiSalvo FJ, Abruña HD (2012) Chem Mater 24:2274–2281CrossRefGoogle Scholar
  26. 26.
    Cai J, Huang Y, Guo Y (2013) Electrochim Acta 99:22–29CrossRefGoogle Scholar
  27. 27.
    Tian M, Malig M, Chen S, Chen A (2011) Electrochem Commun 13:370–373CrossRefGoogle Scholar
  28. 28.
    Yin Z, Chi M, Zhu Q, Ma D, Sun J, Bao X (2013) J Mater Chem A 1:9157–9163CrossRefGoogle Scholar
  29. 29.
    Simonet J (2010) Electrochem Commun 12:1475–1478CrossRefGoogle Scholar
  30. 30.
    Liu M, Lu Y, Chen W (2013) Adv Funct Mater 23:1289–1296CrossRefGoogle Scholar
  31. 31.
    Gunji T, Saravanan G, Tanabe T, Tsuda T, Miyauchi M, Kobayashi G, Abe H, Matsumoto F (2014) Catal. Sci Technol 4:1436–1445Google Scholar
  32. 32.
    Furukawa S, Suga A, Komatsu T (2014) Chem Commun 50:3277–3280CrossRefGoogle Scholar
  33. 33.
    Mayrhofer KJJ, Strmcnik D, Blizanac BB, Stamenkovic V, Arenz M, Markovic NM (2008) Electrochim Acta 53:3181–3188CrossRefGoogle Scholar
  34. 34.
    Bonnecaze RT, Mano N, Nam B, Heller A (2007) J Electrochem Soc 154:F44–F47CrossRefGoogle Scholar
  35. 35.
    Huang SY, Ganesan P, Park S, Popov BN (2009) J Am Chem Soc 131:13898–13899CrossRefGoogle Scholar
  36. 36.
    Chierchie T, Mayer C, Lorenz WJ (1982) J Electroanal Chem 135:211–220CrossRefGoogle Scholar
  37. 37.
    Matsumoto F, Roychowdhury C, DiSalvo FJ, Abruña HD (2008) J Electrochem Soc 155:B148–B154CrossRefGoogle Scholar
  38. 38.
    Massalski TB (Editor-in-Chief) (1990) Binary Phase Diagrams, 2nd ed., Vol. 1, ASM International, Materials Park, OHGoogle Scholar
  39. 39.
    Seo MH, Choi SM, Kim HJ, Kim WB (2011) Electrochem Commun 13:182–185CrossRefGoogle Scholar
  40. 40.
    Bard AJ, Faulkner LR (1980) Electrochemical methods: fundamentals and applications. Wiley, New YorkGoogle Scholar
  41. 41.
    Park S-A, Lim H, Kim Y-T (2015) ACS Catal 5:3995–4002CrossRefGoogle Scholar
  42. 42.
    Wu Q, Rao Z, Yuan L, Jiang L, Sun G, Ruan J, Zhou Z, Sang S (2014) Electrochim Acta 150:157–166CrossRefGoogle Scholar
  43. 43.
    Sahraie NR, Kramm UI, Steinberg J, Zhang Y, Thomas A, Reier T, Paraknowitsch JP, Strasser P (2015) Nat Commun 6:8618CrossRefGoogle Scholar
  44. 44.
    Bruix A (2012) J Am Chem Soc 134:8968–8974CrossRefGoogle Scholar
  45. 45.
    Campbell CT (2012) Nat Chem 4:597–598CrossRefGoogle Scholar
  46. 46.
    Awaludin Z, Suzuki M, Masud J, Okajima T, Ohsaka T (2011) J Phys Chem C 115:25557–25567CrossRefGoogle Scholar
  47. 47.
    Jaksic JM, Labou D, Papakonstantinou GD, Siokou A, Jaksic MM (2010) J Phys Chem C 114:18298–18312CrossRefGoogle Scholar
  48. 48.
    Hyun K, Lee JH, Yoon CW, Kwon Y (2013) Int J Electrochem Sci 8:11752–11767Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Arockiam John Jeevagan
    • 1
  • Takao Gunji
    • 1
  • Fūma Ando
    • 1
  • Toyokazu Tanabe
    • 1
  • Shingo Kaneko
    • 2
  • Futoshi Matsumoto
    • 1
  1. 1.Department of Materials and Life ChemistryKanagawa UniversityYokohamaJapan
  2. 2.Research Institute for EngineeringKanagawa UniversityYokohamaJapan

Personalised recommendations