Journal of Applied Electrochemistry

, Volume 46, Issue 8, pp 829–839 | Cite as

Electrolyzer performance for producing hydrogen via a solar-driven hybrid-sulfur process

Research Article


Advances in fuel-cell technology and an increasing demand for hydrogen are driving the need for the development of more efficient methods to produce hydrogen. Thermochemical cycles, which produce pure hydrogen by splitting water through a series of chemical reactions, are being investigated as avenues for producing hydrogen efficiently on a large scale. Although there are hundreds of possible thermochemical cycles, the hybrid-sulfur process is the only practical, all-fluid, two-step thermochemical cycle. In a solar-driven process, solar radiation is used in a solar receiver/reactor to provide the energy needed to vaporize and decompose sulfuric acid. The resulting sulfur dioxide (SO2) is used in the second step consisting of an SO2-depolarized electrolyzer (SDE) that electrochemically oxidizes SO2 with water to form sulfuric acid at the anode and hydrogen at the cathode. All the sulfur species are internally recycled and the overall reaction is the splitting of water to form hydrogen and oxygen. We report here on our patented gas-fed SDE that was tested over a range of operating conditions (e.g., current, temperature) and design variations (e.g., membrane type and thickness). A key insight from our work is that perfluorinated sulfonic acid membranes like Nafion® dehydrate at high acid concentrations, leading to high membrane resistance. Using acid-doped polybenzimidazole membranes represent an alternative material because they do not rely on water for their proton conductivity, and they can operate at temperatures above 100 °C.


Thermochemical cycles Hydrogen production Electrolyzer Polymer membranes 


  1. 1.
    Nuclear Hydrogen R&D Plan (2004) Department Of Energy. Office of Nuclear Energy, Science and TechnologyGoogle Scholar
  2. 2.
    NRC-NAE (2005) The Hydrogen economy: opportunities, costs, barriers, and R&D needs. National Academies Press, Washington, DCGoogle Scholar
  3. 3.
    DOE Hydrogen and Fuel Cells Program: Annual Progress Report, US Department Of Energy, DOE/GO-102013-4260 (2013)Google Scholar
  4. 4.
    Hawkins DG, Lashof DA, Williams RH (2006) Sci Am 295:68–75CrossRefGoogle Scholar
  5. 5.
    Socolow RH (2005) Sci Am 293:49–55CrossRefGoogle Scholar
  6. 6.
    Corgnale C, Summers WA (2011) Int J Hydrogen Energy 36:11604–11619CrossRefGoogle Scholar
  7. 7.
    Lu PW, Ammon RL (1980) J Electrochem Soc 127:2610CrossRefGoogle Scholar
  8. 8.
    Lu PW, Garcia ER, Ammon RL (1981) J Appl Electrochem 11:347CrossRefGoogle Scholar
  9. 9.
    Courtesy of Savannah River National Laboratory via M.B. Gorensek, personal communication (2015)Google Scholar
  10. 10.
    Weidner JW, Holland CE Patent #9,057,136, Filed April 12 2006Google Scholar
  11. 11.
    Sivasubramanian P, Ramasamy RP, Freire FJ, Holland CE, Weidner JW (2007) Int J Hydrogen Energy 32:463CrossRefGoogle Scholar
  12. 12.
    Staser J, Ramasamy RP, Sivasubramanian P, Weidner JW (2007) Electrochem Solid-State Lett 10:E17CrossRefGoogle Scholar
  13. 13.
    Staser JA, Weidner JW (2009) J Electrochem Soc 156:B16CrossRefGoogle Scholar
  14. 14.
    Staser JA, Weidner JW (2009) J Electrochem Soc 156:B836CrossRefGoogle Scholar
  15. 15.
    Staser JA, Gorensek MB, Weidner JW (2010) J Electrochem Soc 157:B952CrossRefGoogle Scholar
  16. 16.
    Jayakumar JV, Gulledge A, Staser JA, Kim CH, Benciwicz BC, Weidner JW (2012) ECS Electrochem Lett 1(6):F44–F48CrossRefGoogle Scholar
  17. 17.
    Mader JA, Benicewicz BC (2010) Macromolecules 43:6706CrossRefGoogle Scholar
  18. 18.
    Zawodzinski TA, Springer TE, Davey J, Jestel R, Lopez C, Valerio J, Gottesfeld S (1993) J Electrochem Soc 140:1981CrossRefGoogle Scholar
  19. 19.
    Yang C, Srinivasan S, Bocarsly AB, Tulyani S, Benziger JB (2004) J Mem Sci 237:145CrossRefGoogle Scholar
  20. 20.
    Zawodzinski TA Jr, Derouin C, Radzinski S, Sherman RJ, Smith VT, Springer TE, Gottesfeld S (1993) J Electrochem Soc 140:1041CrossRefGoogle Scholar
  21. 21.
    Gorensek MB, Staser JA, Stanford TG, Weidner JW (2009) Int J Hydrogen Energy 34:6089–6095CrossRefGoogle Scholar
  22. 22.
    Wainright JS, Wang J-T, Weng D, Savinell RF, Litt M (1995) J Electrochem Soc 142:L121CrossRefGoogle Scholar
  23. 23.
    Wang J-T, Savinell RF, Wainright J, Litt M, Yu H (1996) Electrochim Acta 41:193CrossRefGoogle Scholar
  24. 24.
    Xiao L, Zhang H, Jana T, Scanlon E, Chen R, Choe E-W, Ramanathan LS, Yu S, Benicewicz BC (2005) Fuel Cells 5(2):287CrossRefGoogle Scholar
  25. 25.
    Xiao L, Zhang H, Scanlon E, Ramanathan LS, Choe E-W, Rogers D, Apple T, Benicewicz BC (2005) Chem Mater 17(21):5328CrossRefGoogle Scholar
  26. 26.
    Mader JA, Benicewicz B (2011) Fuel Cells 11:212CrossRefGoogle Scholar
  27. 27.
    Gulledge AL, Gu B, Benicewicz BC (2011) J Polym Sci A 50:306CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Center for Electrochemical Engineering, Department of Chemical EngineeringUniversity of South CarolinaColumbiaUSA

Personalised recommendations