Journal of Applied Electrochemistry

, Volume 46, Issue 4, pp 497–503 | Cite as

Doped rhodium sulfide and thiospinels hydrogen evolution and oxidation electrocatalysts in strong acid electrolytes

  • Nirala Singh
  • Michael Gordon
  • Horia Metiu
  • Eric McFarlandEmail author
Research Article
Part of the following topical collections:
  1. Hydrogen production


Hydrogen evolution and oxidation activity of several carbon-supported rhodium thiospinels (CuRh2S4, CoRh2S4, FeRh2S4, and NiRh2S4) are evaluated in sulfuric acid and compared with Ir, Ru, and Pd-doped and undoped Rh17S15 on carbon. The metal sulfides are synthesized on carbon by reacting metal chlorides with hydrogen sulfide at 350 °C. Mixtures of Cu, Co, Fe, and Ni salts with RhCl3 formed thiospinels. The minority metals, Pd, Ru, or Ir, incorporate into the Rh17S15 structure at low concentrations (1 %). The hydrogen evolution and oxidation activities of the thiospinels in sulfuric acid are lower than pure Rh17S15/C, with NiRh2S4/C showing the highest activity of the thiospinels, and CuRh2S4/C seen to be unstable in sulfuric acid, even for short times (1 min). The hydrogen evolution and oxidation activities normalized to an estimate of the electrocatalyst area for the 1 % Pd, Ru, and Ir in Rh17S15/C are slightly lower than pure Rh17S15/C and all metal sulfides have a lower hydrogen evolution activity than platinum, even when normalizing to surface area.

Graphical abstract


Electrocatalysts Hydrogen evolution reaction Hydrogen oxidation reaction Metal sulfides 



Financial support was by the National Science Foundation (EFRI-1038234). The MRL Shared Experimental Facilities are supported by the MRSEC Program of the NSF under Award No. DMR 1121053; a member of the NSF-funded Materials Research Facilities Network. We would like to thank Stephan Kraemer for the assistance with TEM.

Supplementary material

10800_2016_938_MOESM1_ESM.docx (998 kb)
Supplementary material 1 (DOCX 998 kb)


  1. 1.
    Van Nguyen T, Kreutzer H, Yarlagadda V et al (2013) HER/HOR catalysts for the H2-Br 2 fuel cell system. ECS Trans 53:75–81Google Scholar
  2. 2.
    Cho KT, Ridgway P, Weber AZ et al (2012) High performance hydrogen/bromine redox flow battery for grid-scale energy storage. J Electrochem Soc 159:A1806–A1815. doi: 10.1149/2.018211jes CrossRefGoogle Scholar
  3. 3.
    Kreutzer H, Yarlagadda V, Van Nguyen T (2012) Performance evaluation of a regenerative hydrogen-bromine fuel cell. J Electrochem Soc 159:F331–F337. doi: 10.1149/2.086207jes CrossRefGoogle Scholar
  4. 4.
    Livshits V, Ulus A, Peled E (2006) High-power H2/Br2 fuel cell. Electrochem Commun 8:1358–1362. doi: 10.1016/j.elecom.2006.06.021 CrossRefGoogle Scholar
  5. 5.
    Ivanovskaya A, Singh N, Liu R-F et al (2013) Transition metal sulfide hydrogen evolution catalysts for hydrobromic acid electrolysis. Langmuir 29:480–492. doi: 10.1021/la3032489 CrossRefGoogle Scholar
  6. 6.
    Singh N, Mubeen S, Lee J et al (2014) Stable electrocatalysts for autonomous photoelectrolysis of hydrobromic acid using single-junction solar cells. Energy Environ Sci. doi: 10.1039/c3ee43709d Google Scholar
  7. 7.
    Singh N, Upham DC, Metiu H, McFarland EW (2013) Gas-phase chemistry to understand electrochemical hydrogen evolution and oxidation on doped transition metal sulfides. J Electrochem Soc 160:A1902–A1906. doi: 10.1149/2.002311jes CrossRefGoogle Scholar
  8. 8.
    Singh N, Upham DC, Liu R-F et al (2014) Investigation of the active sites of rhodium sulfide for hydrogen evolution/oxidation using carbon monoxide as a probe. Langmuir 30:5662–5668. doi: 10.1021/la500723y CrossRefGoogle Scholar
  9. 9.
    Masud J, Van Nguyen T, Singh N et al (2015) A RhxSy/C catalyst for the hydrogen oxidation and hydrogen evolution reactions in HBr. J Electrochem Soc 162:F455–F462. doi: 10.1149/2.0901504jes CrossRefGoogle Scholar
  10. 10.
    Singh N, Hiller J, Metiu H, McFarland E (2014) Investigation of the electrocatalytic activity of rhodium sulfide for hydrogen evolution and hydrogen oxidation. Electrochim Acta 145:224–230. doi: 10.1016/j.electacta.2014.09.012 CrossRefGoogle Scholar
  11. 11.
    Gullá AF, Gancs L, Allen RJ, Mukerjee S (2007) Carbon-supported low-loading rhodium sulfide electrocatalysts for oxygen depolarized cathode applications. Appl Catal A Gen 326:227–235. doi: 10.1016/j.apcata.2007.04.013 CrossRefGoogle Scholar
  12. 12.
    Ziegelbauer JM, Gullá AF, O’Laoire C et al (2007) Chalcogenide electrocatalysts for oxygen-depolarized aqueous hydrochloric acid electrolysis. Electrochim Acta 52:6282–6294. doi: 10.1016/j.electacta.2007.04.048 CrossRefGoogle Scholar
  13. 13.
    Singh N, McFarland EW (2015) Levelized cost of energy and sensitivity analysis for the hydrogen–bromine flow battery. J Power Sources 288:187–198. doi: 10.1016/j.jpowsour.2015.04.114 CrossRefGoogle Scholar
  14. 14.
    Kemppainen E, Bodin A, Sebok B et al (2015) Scalability and feasibility of photoelectrochemical H2 evolution: the ultimate limit of Pt nanoparticle as an HER catalyst. Energy Environ Sci. doi: 10.1039/C5EE02188J Google Scholar
  15. 15.
    Greeley J, Jaramillo TF, Bonde J et al (2006) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater 5:909–913. doi: 10.1038/nmat1752 CrossRefGoogle Scholar
  16. 16.
    Yasuda H, Geantet C, Afanasiev P et al (2002) Preparation, structural and hydrotreating catalytic properties of unsupported NiRh2S4. New J Chem 26:1196–1200. doi: 10.1039/b200914p CrossRefGoogle Scholar
  17. 17.
    Yurchuk NM, Sofronkov AN, Korolenko LI, Petrosyan VP (1998) Hydrogen evolution overvoltage on thiospinels of metals with variable oxidation state and their corrosion resistance. Russ J Appl Chem 71:1267–1268Google Scholar
  18. 18.
    Behret H, Binder H, Sandstede G (1975) Electrocatalytic oxygen reduction with thiospinels and other sulphides of transition metals. Electrochim Acta 20:111–117. doi: 10.1016/0013-4686(75)90047-X CrossRefGoogle Scholar
  19. 19.
    Geller S (1962) The crystal structure of the superconductor Rh17S15. Acta Crystallogr 15:1198–1201. doi: 10.1107/S0365110X62003199 CrossRefGoogle Scholar
  20. 20.
    Tressler RE, Hummel FA, Stubican VS (1968) Pressure–temperature study of sulfospinels. J Am Ceram Soc 51:648–651. doi: 10.1111/j.1151-2916.1968.tb12637.x CrossRefGoogle Scholar
  21. 21.
    Kim H, Popov BN (2002) Characterization of hydrous ruthenium oxide/carbon nanocomposite supercapacitors prepared by a colloidal method. J Power Sources 104:52–61. doi: 10.1016/S0378-7753(01)00903-X CrossRefGoogle Scholar
  22. 22.
    Connolly JF, Flannery RJ, Aronowitz G (1966) Electrochemical measurement of the available surface area of carbon-supported platinum. J Electrochem Soc 113:577. doi: 10.1149/1.2424030 CrossRefGoogle Scholar
  23. 23.
    Pajkossy T, Kolb DM (2007) Double layer capacitance of the platinum group metals in the double layer region. Electrochem Commun 9:1171–1174. doi: 10.1016/j.elecom.2007.01.002 CrossRefGoogle Scholar
  24. 24.
    Rosen M, Flinn DR, Schuldiner S (1969) double layer capacitance on platinum in 1 m h2so4 from the reversible hydrogen potential to the oxygen formation region. J Electrochem Soc 116:1112. doi: 10.1149/1.2412227 CrossRefGoogle Scholar
  25. 25.
    Krishnamurthy B, Deepalochani S (2009) Performance of platinum black and supported platinum catalysts in a direct methanol fuel cell. Int J Electrochem Sci 4:386–395Google Scholar
  26. 26.
    Bevilacqua M, Bianchini C, Marchionni A et al (2012) Improvement in the efficiency of an organometallic fuel cell by tuning the molecular architecture of the anode electrocatalyst and the nature of the carbon support. Energy Environ Sci 5:8608. doi: 10.1039/c2ee22055e CrossRefGoogle Scholar
  27. 27.
    Schmidt TJ, Gasteiger HA, Stäb GD et al (1998) Characterization of High-surface-area electrocatalysts using a rotating disk electrode configuration. J Electrochem Soc 145:2354–2358. doi: 10.1149/1.1838642 CrossRefGoogle Scholar
  28. 28.
    Sheng W, Gasteiger HA, Shao-Horn Y (2010) Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. J Electrochem Soc 157:B1529. doi: 10.1149/1.3483106 CrossRefGoogle Scholar
  29. 29.
    Matsumoto N, Endoh R, Nagata S et al (1999) Metal-insulator transition and superconductivity in the spinel-type Cu(Ir1-xRhx)2S4 system. Phys Rev B 60:5258–5265CrossRefGoogle Scholar
  30. 30.
    Itoh H (1979) A New ferromagnetic spinel system Ni(Rh1-xCrx)2S4 (0.15 < x<0.40) with metallic conduction. J Phys Soc Japan 46:1127–1130CrossRefGoogle Scholar
  31. 31.
    Kondo H (1976) Mossbauer Study of FexCo1-xRh2S4 with Spinel Structure. J Phys Soc Jpn 41:1247–1254CrossRefGoogle Scholar
  32. 32.
    Blasse G (1965) Antiferromagnetism of CoRh2S4. Phys Lett 19:1965CrossRefGoogle Scholar
  33. 33.
    Nørskov JK, Bligaard T, Logadottir A et al (2005) Trends in the exchange current for hydrogen evolution. J Electrochem Soc 152:J23. doi: 10.1149/1.1856988 CrossRefGoogle Scholar
  34. 34.
    Benck JD, Chen Z, Kuritzky LY et al (2012) Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: insights into the origin of their catalytic activity. ACS Catal 2:1916–1923CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Nirala Singh
    • 1
  • Michael Gordon
    • 1
  • Horia Metiu
    • 2
  • Eric McFarland
    • 1
    Email author
  1. 1.Department of Chemical EngineeringUniversity of California Santa BarbaraSanta BarbaraUSA
  2. 2.Department of Chemistry and BiochemistryUniversity of California Santa BarbaraSanta BarbaraUSA

Personalised recommendations