Advertisement

Journal of Applied Electrochemistry

, Volume 46, Issue 3, pp 267–278 | Cite as

The application of a water-based hybrid polymer binder to a high-voltage and high-capacity Li-rich solid-solution cathode and its performance in Li-ion batteries

  • Kouhei Notake
  • Takao Gunji
  • Hayato Kokubun
  • Shinya Kosemura
  • Yasumasa Mochizuki
  • Toyokazu Tanabe
  • Shingo Kaneko
  • Shinsaku Ugawa
  • Hojin Lee
  • Futoshi Matsumoto
Research Article
Part of the following topical collections:
  1. Batteries

Abstract

Uniform cathode films were prepared with a Li-rich solid-solution (Li[Li0.2Ni0.18Co0.03Mn0.58]O2) cathode material and a water-based hybrid polymer binder (TRD202A, JSR, Japan) composed of acrylic polymer and fluoropolymer, carboxymethyl cellulose, and conducting carbon additive. The films exhibited stable charge/discharge cycling performances (average discharge capacity: 260 mAh g−1) when cycled between 4.8 and 2.0 V for 80 cycles. After 80 cycles in the chemical environment of Li-ion cells, a cathode film prepared with the water-based hybrid polymer binder showed longer-term reliability as well as higher electrochemical resistance when compared with a cathode film using the conventional polyvinylidene difluoride binder. Additionally, even without electrochemical pretreatment, the Al2O3 coating on the cathode surfaces improved the cycling stability by preventing the cathode surface from making direct contact with H2O.

Graphical Abstract

Keywords

Lithium ion battery Water-based binder High-capacity cathode material Li-rich solid-solution 

References

  1. 1.
    Wood IIIDL, Li J, Daniel C (2015) J Power Sources 275:234–242CrossRefGoogle Scholar
  2. 2.
    Yuca N, Zhao H, Song X, Dogdu MF, Yuan W, Fu Y, Battaglia VS, Xiao X, Liu G (2014) ACS Appl Mater Interfaces 6:17111–17118CrossRefGoogle Scholar
  3. 3.
    Yabuuchi N, Kinoshita Y, Misaki K, Natsuyama T, Komaba S (2015) J Electrochem Soc 162:A538–A544CrossRefGoogle Scholar
  4. 4.
    He M, Yuan L-X, Zhang W-X, Hu X-L, Huang Y-H (2011) J Phys Chem C 115:15703–15709CrossRefGoogle Scholar
  5. 5.
    Mancini M, Nobili F, Tossici R, Mehrens MW, Marassi R (2011) J Power Sources 196:9665–9671CrossRefGoogle Scholar
  6. 6.
    Komaba S, Yabuuchi N, Ozeki T, Han Z-J, Shimomura K, Yui H, Katayama Y, Miura T (2012) J Phys Chem C 116:1380–1389CrossRefGoogle Scholar
  7. 7.
    Sun M, Zhong H, Jiao S, Shao H, Zhang L (2014) Electrochim Acta 127:239–244CrossRefGoogle Scholar
  8. 8.
    Klamor S, Schröder M, Brunklaus G, Niehoff P, Berkemeier F, Schappacher FM, Winter M (2015) Phys Chem Chem Phys 175:632–5641Google Scholar
  9. 9.
    Solomon GM, Morse EP, Garbo MJ, Milton DK (1996) J Occup Environ Med 38:705–713CrossRefGoogle Scholar
  10. 10.
    Pinter T, Hof F (2011) Chem Commun 47:12688–12690CrossRefGoogle Scholar
  11. 11.
    Buqa H, Holzapfel M, Krumeich F, Veit C, Novák P (2006) J Power Sources 161:617–622CrossRefGoogle Scholar
  12. 12.
    Lee J-H, Lee S, Paik U, Choi Y-M (2005) J Power Sources 147:249–255CrossRefGoogle Scholar
  13. 13.
    Wu Q, Ha S, Prakash J, Dees DW, Lu W (2013) Electrochim Acta 114:1–6CrossRefGoogle Scholar
  14. 14.
    Prosini PP, Carewska M, Masci A (2015) Solid State Lonics 274:88–93CrossRefGoogle Scholar
  15. 15.
    Oiu L, Shao Z, Wang D, Wang F, Wang J (2014) Carbohydr Polym 112:532–538CrossRefGoogle Scholar
  16. 16.
    Prosini PP, Cento C, Carewska M, Masci A (2015) Solid State Ionics 274:34–39CrossRefGoogle Scholar
  17. 17.
    Doberdò I, Löffler N, Laszczynski N, Cericola D, Penazzi N, Bodoardo S, Kim G-T, Passerini S (2014) J Power Sources 248:1000–1006CrossRefGoogle Scholar
  18. 18.
    Soeda K, Yamagata M, Ishikawa M (2015) ECS Trans 64:13–22CrossRefGoogle Scholar
  19. 19.
    Courtel FM, Niketic S, Duguay D, Lebdeh YA, Davidson IJ (2011) J Power Sources 196:2128–2134CrossRefGoogle Scholar
  20. 20.
    Wang Z, Dupré N, Gaillot A-C, Lestriez B, Martin J-F, Daniel L, Patoux S, Guyomard D (2012) Electrochim Acta 62:77–83CrossRefGoogle Scholar
  21. 21.
    Li J, Klopsch R, Nowak S, Kunze M, Winter M, Passerini S (2011) J Power Sources 196:7687–7691CrossRefGoogle Scholar
  22. 22.
    Qiu L, Shao Z, Wang D, Wang W, Wang F, Wang J (2014) Carbohydr Polym 111:588–591CrossRefGoogle Scholar
  23. 23.
    Thackeray MM, Kang S-H, Johnson CS, Vaughey JT, Benedek R, Hackney SA (2007) J Mater Chem 17:3112–3125CrossRefGoogle Scholar
  24. 24.
    Armstrong AR, Holzapfel M, Novak P, Johnson CC, Kang S-H, Thackeray MM, Bruce PG (2006) J Am Chem Soc 128:8694–8698CrossRefGoogle Scholar
  25. 25.
    Numata K, Sakaki C, Yamanaka S (1997) Chem Lett 8:725–726CrossRefGoogle Scholar
  26. 26.
    Lu Z, Dahn JR (2002) J Electrochem Soc 149:A815–A822CrossRefGoogle Scholar
  27. 27.
    Lu Z, Dahn JR (2002) J Electrochem Soc 149:A778–A791CrossRefGoogle Scholar
  28. 28.
    Jarvis KA, Deng Z, Allard LF, Manthiram A, Ferreira PJ (2011) Chem Mater 23:3614–3621CrossRefGoogle Scholar
  29. 29.
    Oh P, Myeong S, Cho W, Lee M-J, Ko M, Jeong HY (2014) J Cho Nano Lett 14:5965–5972CrossRefGoogle Scholar
  30. 30.
    Yu H, Zhou H (2013) J Phys Chem Lett 4:1268–1280CrossRefGoogle Scholar
  31. 31.
    Zhang K, Han X, Hu Z, Zhang X, Tao Z (2015) J. Chen. Chem Soc Rev 44:699–728CrossRefGoogle Scholar
  32. 32.
    Ito A, Li DC, Sato Y, Arao M, Watanabe M, Hatano M, Horie H, Ohsawa Y (2010) J Power Sources 195:567–573CrossRefGoogle Scholar
  33. 33.
    Watanabe A, Matsumoto F, Fukunishi M, Kobayashi G, Ito A, Hatano M, Ohsawa Y, Sato Y (2012) Electrochemistry 80:561–565CrossRefGoogle Scholar
  34. 34.
    Ito A, Li D, Ohsawa Y, Sato Y (2008) J Power Sources 183:344–346CrossRefGoogle Scholar
  35. 35.
    Huang X, Qiao Q, Sun Y, Li F, Wang Y, Ye SJ (2015) Soild Satate Electrochem 19:805–812CrossRefGoogle Scholar
  36. 36.
    Kaneko S, Xia B, Zhang Q, Fang G, Liu W, Sun H, Matsumoto F, Sato Y, Zheng J, Li D (2014) Electrochemistry 82:438–443CrossRefGoogle Scholar
  37. 37.
    Zhang X, Belharouak I, Li L, Lei Y, Elam JW, Nie A, Chen X, Yassar RS, Axeibaum RL (2013) Adv Energy Mater 3:1299–1307CrossRefGoogle Scholar
  38. 38.
    Peralta D, Colin J-F, Boulineau A, Simonin L, Fabre F, Bouvet J, Feydi P, Chakir M, Chapuis M, Patoux S (2015) J Power Sources 280:687–694CrossRefGoogle Scholar
  39. 39.
    Vu A, Walker LK, Barenõ J, Burrell AK, Bloom I (2015) J Power Sources 280:155–158CrossRefGoogle Scholar
  40. 40.
    Martha SK, Nanda J, Veith GM, Dudney N (2012) J Power Sources 199:220–226CrossRefGoogle Scholar
  41. 41.
    Song B, Liu H, Liu Z, Xiao P, Lai MO, Lu L (2013) Sci Rep 3:3094Google Scholar
  42. 42.
    Pol VG, Li Y, Dogan F, Secor E, Thackeray MM, Abraham DP (2014) J Power Sources 258:46–53CrossRefGoogle Scholar
  43. 43.
    Zou GS, Yang XK, Wang XY, Ge L, Shu HB, Bai YS, Wu C, Guo HP, Hu L, Yi X (2014) J. Soild State Electrochem 18:1789–1797CrossRefGoogle Scholar
  44. 44.
    Xu M, Chen ZY, Li LJ, Zhu HL, Zhao QF, Xu L, Peng NF, Gong L (2015) J Power Sources 281:444–454CrossRefGoogle Scholar
  45. 45.
    Choi M, Ham G, Jin B-S, Lee S-M, Lee YM, Wang G, Kim H-S (2014) J Alloy Compd 606:110–117CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Kouhei Notake
    • 1
  • Takao Gunji
    • 1
  • Hayato Kokubun
    • 1
  • Shinya Kosemura
    • 1
  • Yasumasa Mochizuki
    • 2
  • Toyokazu Tanabe
    • 1
    • 2
  • Shingo Kaneko
    • 3
  • Shinsaku Ugawa
    • 4
  • Hojin Lee
    • 4
  • Futoshi Matsumoto
    • 1
    • 2
  1. 1.Faculty of EngineeringKanagawa UniversityYokohamaJapan
  2. 2.LIB Open-LibraryKanagawa UniversityYokohama-shiJapan
  3. 3.Research Institute for EngineeringKanagawa UniversityYokohama-shiJapan
  4. 4.JSR CorporationYokkaichiJapan

Personalised recommendations