Journal of Applied Electrochemistry

, Volume 46, Issue 5, pp 567–573 | Cite as

Supercapacitive properties of activated carbon electrode in potassium-polyacrylate hydrogel electrolytes

  • Kwang Man Kim
  • Young-Gi Lee
  • Dong Ok Shin
  • Jang Myoun Ko
Research Article
Part of the following topical collections:
  1. Capacitors


To enhance the electrochemical performance, a conventional activated carbon supercapacitor is modified by adopting potassium-polyacrylate (PAAK) electrolyte additive on a glass fiber separator and by fabricating the activated carbon electrode on nickel foam instead of on conventional nickel foil as a current collector. The glass fiber separator plays the role of self-supporting PAAK-KOH hydrogel electrolyte with superior ionic conductivity. Moreover, the adoption of nickel foam strengthens the close contact between the active material and the current collector, reducing the interfacial resistance between electrode and electrolyte. As a result, the combination of glass fiber separator and nickel foam substrate can contribute to a great increase in the specific capacitance, to a value of over 200 F g−1, and to an enhancement of the high-rate capability of activated carbon supercapacitors.

Graphical abstract


Potassium-polyacrylate Hydrogel electrolyte Glass fiber separator Nickel foam substrate Supercapacitor 



We would like to acknowledge the financial support (14-2-KITECH) from the R&D Convergence Program of NST (National Research Council of Science and Technology) of Republic of Korea. This work was also supported by the Energy Efficiency & Resources Core Technology Program of KETEP, granted financial resource from the Korean Ministry of Trade, Industry & Energy (20152010103470).


  1. 1.
    Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343(6176):1210–1211CrossRefGoogle Scholar
  2. 2.
    Yan J, Wang Q, Wei T, Fan Z (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater 4(4):1300816Google Scholar
  3. 3.
    Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828CrossRefGoogle Scholar
  4. 4.
    Yu Z, Tetard L, Zhai L, Thomas J (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci 8(3):702–730CrossRefGoogle Scholar
  5. 5.
    Béguin F, Presser V, Balducci A, Frackowiak E (2014) Carbon and electrolytes for advanced supercapacitors. Adv Mater 26(14):2219–2251CrossRefGoogle Scholar
  6. 6.
    Gu W, Yushin G (2014) Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene. WIREs Energy Environ 3(5):424–473CrossRefGoogle Scholar
  7. 7.
    Nishiyama Y, Satoh M (2000) Solvent- and counterion-specific swelling behavior of poly(acrylic acid) gels. J Polym Sci Part B 38(21):2791–2800CrossRefGoogle Scholar
  8. 8.
    Iwakura C, Furukawa N, Ohnishi T, Sakamoto K, Nohara S, Inoue H (2001) Nickel/metal hydride cells using an alkaline polymer gel electrolyte. Electrochemistry 69(9):659–663Google Scholar
  9. 9.
    Iwakura C, Nohara S, Furukawa N, Inoue H (2002) The possible use of polymer gel electrolytes in nickel/metal hydride battery. Solid State Ionics 148(3–4):487–492CrossRefGoogle Scholar
  10. 10.
    Iwakura C, Ikoma K, Nohara S, Furukawa N, Inoue H (2003) Charge-discharge and capacity retention characteristics of new type Ni/MH batteries using polymer hydrogel electrolyte. J Electrochem Soc 150(12):A1623–A1627CrossRefGoogle Scholar
  11. 11.
    Iwakura C, Horiguchi M, Nohara S, Furukawa N, Inoue H (2005) Suppression of electrolyte creepage with polymer hydrogel electrolyte for nickel/metal hydride batteries. J Appl Electrochem 35(3):293–295CrossRefGoogle Scholar
  12. 12.
    Iwakura C, Wada H, Nohara S, Furukawa N, Inoue H, Morita M (2003) New electric double layer capacitor with polymer hydrogel electrolyte. Electrochem Solid-State Lett 6(2):A37–A39CrossRefGoogle Scholar
  13. 13.
    Nohara S, Wada H, Furukawa N, Inoue H, Morita M, Iwakura C (2003) Electrochemical characterization of new electric double layer capacitor with polymer hydrogel electrolyte. Electrochim Acta 48(6):749–753CrossRefGoogle Scholar
  14. 14.
    Wada H, Nohara S, Furukawa N, Inoue H, Sugoh N, Iwasaki H, Morita M, Iwakura C (2004) Electrochemical characteristics of electric double layer capacitor using sulfonated polypropylene separator impregnated with polymer hydrogel electrolyte. Electrochim Acta 49(27):4871–4875CrossRefGoogle Scholar
  15. 15.
    Nohara S, Asahina T, Wada H, Furukawa N, Inoue H, Sugoh N, Iwasaki H, Iwakura C (2006) Hybrid capacitor with activated carbon electrode, Ni(OH)2 electrode and polymer hydrogel electrolyte. J Power Sources 157(1):605–609CrossRefGoogle Scholar
  16. 16.
    Lee K-T, Wu N-L (2008) Manganese oxide electrochemical capacitor with potassium poly(acrylate) hydrogel electrolyte. J Power Sources 179(1):430–434CrossRefGoogle Scholar
  17. 17.
    Lee K-T, Lee J-F, Wu N-L (2009) Electrochemical characterizations on MnO2 supercapacitors with potassium polyacrylate and potassium polyacrylate-co-polyacrylamide gel polymer electrolytes. Electrochim Acta 54(26):6148–6153CrossRefGoogle Scholar
  18. 18.
    Nam H-S, Wu N-L, Lee K-T, Kim KM, Yeom CG, Hepowit LR, Ko JM, Kim J-D (2012) Electrochemical capacitances of a nanowire-structured MnO2 in polyacrylate-based gel electrolytes. J Electrochem Soc 159(6):A899–A903CrossRefGoogle Scholar
  19. 19.
    Kim KM, Nam JH, Lee Y-G, Cho WI, Ko JM (2013) Supercapacitive properties of electrodeposited RuO2 electrode in acrylic gel polymer electrolytes. Curr Appl Phys 13(8):1702–1706CrossRefGoogle Scholar
  20. 20.
    Ko JM, Nam JH, Won JH, Kim KM (2014) Supercapacitive properties of electrodeposited polyaniline electrode in acrylic gel polymer electrolytes. Synth Metals 189(1):152–156CrossRefGoogle Scholar
  21. 21.
    Staiti P, Minutoli M, Lufrano F (2002) All solid electric double layer capacitors based on Nafion ionomer. Electrochim Acta 47(17):2795–2800CrossRefGoogle Scholar
  22. 22.
    Prosini PP, Villano P, Carewska M (2002) A novel intrinsically porous separator for self-standing lithium-ion batteries. Electrochim Acta 48(3):227–233CrossRefGoogle Scholar
  23. 23.
    Zhu Y, Wang F, Liu L, Xiao S, Yang Y, Wu Y (2013) Cheap glass fiber mats as a matrix of gel polymer electrolytes for lithium ion batteries. Sci Rep 3:3187Google Scholar
  24. 24.
    Liang J, Cai Z, Tian Y, Li L, Geng J, Guo L (2013) Dsposition SnO2/nitrogen-doped graphene nanocomposites on the separator: a new type of flexible electrode for energy storage devices. ACS Appl Mater Interf 5(22):12148–12155CrossRefGoogle Scholar
  25. 25.
    Zhang B, Wang Q, Zhang J, Ding G, Xu G, Liu Z, Cui G (2014) A superior thermostable and nonflammable composite membrane towards high power battery separator. Nano Energy 10:277–287CrossRefGoogle Scholar
  26. 26.
    Metzger W, Westfall R, Hermann A, Lyman P (1998) Nickel foam substrate for nickel metal hydride electrodes and lightweight honeycomb structures. Intern J Hydrogen Energy 23(11):1025–1029CrossRefGoogle Scholar
  27. 27.
    Yan D, Cui W (1999) Preparation and properties of no-binder electrode Ni/MH battery. J Alloys Comp 293–295:780–783CrossRefGoogle Scholar
  28. 28.
    Bispo-Fonseca I, Aggar J, Sarrazin C, Simon P, Fauvarque JF (1999) Possible improvements in making carbon electrodes for organic supercapacitors. J Power Sources 79(2):238–241CrossRefGoogle Scholar
  29. 29.
    Zhao C, Wang X, Wang S, Wang Y, Zhao Y, Zheng W (2012) Synthesis of Co(OH)2/Ni foam nano-electrodes with excellent pseudocapacitive behavior and high cycling stability for supercapacitors. Intern J Hydrogen Energy 37(16):11846–11852CrossRefGoogle Scholar
  30. 30.
    Cho HW, Nam JH, Park JH, Kim KM, Ko JM (2012) Supercapacitive properties of Co-Ni mixed oxide electrode adopting the nickel foam as a current collector. Bull Korean Chem Soc 33(12):3993–3997CrossRefGoogle Scholar
  31. 31.
    Huang Z, Zhang H, Chen Y, Wang W, Chen Y, Zhong Y (2013) Microwave-assisted synthesis of functionalized graphene on Ni foam as electrodes for supercapacitor application. Electrochim Acta 108:421–428CrossRefGoogle Scholar
  32. 32.
    Guan B, Hu L, Zhang G, Guo D, Fu T, Li J, Duan H, Li C, Li Q (2014) Facile synthesis of ZnWO4 nanowall arrays on Ni foam for high performance supercapacitors. RSC Adv 4(9):4212–4217CrossRefGoogle Scholar
  33. 33.
    Wang Z, Zhang Y, Li Y, Fu H (2014) Hierarchical porous NiCo2O4 nanograss arrays grown on Ni foam as electrode material for high-performance supercapacitors. RSC Adv 4(39):20234–20238CrossRefGoogle Scholar
  34. 34.
    Gong X, Cheng JP, Liu F, Zhang L, Zhang X (2014) Nickel-cobalt hydroxide microspheres electrodepositioned on nickel cobaltite nanowires grown on Ni foam for high-performance pseudocapacitors. J Power Sources 267:610–616CrossRefGoogle Scholar
  35. 35.
    Wang Q, Wang X, Liu B, Yu G, Hou X, Chen D, Shen G (2013) NiCo2O4 nanowire arrays supported on Ni foam for high-performance flexible all-solid-state supercapacitors. J Mater Chem A 1(7):2468–2473CrossRefGoogle Scholar
  36. 36.
    Guo D, Zhang H, Yu X, Zhang M, Zhang P, Li Q, Wang T (2013) Facile synthesis and excellent electrochemical properties of CoMoO4 nanoplate arrays as supercapacitors. J Mater Chem A 1(24):7247–7254CrossRefGoogle Scholar
  37. 37.
    Cao Y, Li W, Xu K, Zhang Y, Ji T, Zou R, Yang J, Qin Z, Hu J (2014) MnMoO4·4H2O nanoplates on a Ni foam substrate for excellent electrochemical properties. J Mater Chem A 2(48):20723–20728CrossRefGoogle Scholar
  38. 38.
    Kim KM, Latifatu M, Lee Y-G, Ko JM, Kim JH, Cho WI (2014) Effect of ceramic filler-containing polymer hydrogel electrolytes coated on the polyolefin separator on the electrochemical properties of activated carbon supercapacitor. J Electroceram 32(2–3):146–153CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Kwang Man Kim
    • 1
  • Young-Gi Lee
    • 1
  • Dong Ok Shin
    • 1
  • Jang Myoun Ko
    • 2
  1. 1.Research Section of Power Control DevicesElectronics and Telecommunications Research Institute (ETRI)DaejonRepublic of Korea
  2. 2.Department of Chemical and Biological EngineeringHanbat National UniversityDaejonRepublic of Korea

Personalised recommendations