Skip to main content
Log in

Electrochemical preparation of uniform CuO/Cu2O heterojunction on β-cyclodextrin-modified carbon fibers

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, a uniform heterojunction of cupric oxide/cuprous oxide was decorated on the surface of carbon fibers by electrochemical method (CuO/Cu2O/CDs/CFs). Methyl-β-cyclodextrin was first grafted on the surface of carbon fibers (CDs/CFs). Cubic cuprous oxide was electrodeposited on the surface of (Cu2O/CDs/CFs) in 0.1 M KNO3, the cuprous oxide was then partly anodized to cupric oxide to form a heterojunction of cupric oxide/cuprous oxide with a burr shape (CuO/Cu2O/CDs/CFs). The obtained materials were characterized by field emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and electrochemical techniques. The potential application in pollution treatment was further investigated, and the prepared CuO/Cu2O/CDs/CFs could be a promising adsorbent/photocatalyst toward the uptake and degradation of 2, 6-dichlorophenol (2, 6-DCP).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhong JH, Li GR, Wang ZL, Ou YN, Tong YX (2010) Facile electrochemical synthesis of hexagonal Cu2O nanotube arrays and their application. Inorg Chem 50(3):757–763

    Article  Google Scholar 

  2. Kim JH, Katoch A, Choi SW, Kim SS (2015) Growth and sensing properties of networked p-CuO nanowires. Sens Actuators B 212:190–195

    Article  CAS  Google Scholar 

  3. McShane CM, Choi KS (2009) Photocurrent enhancement of n-type Cu2O electrodes achieved by controlling dendritic branching growth. J Am Chem Soc 131(7):2561–2569

    Article  CAS  Google Scholar 

  4. Sharma JK, Akhtar MS, Ameen S, Srivastava P, Singh G (2015) Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications. J Alloys Compd 632:321–325

    Article  CAS  Google Scholar 

  5. Fishman D, Faugeras C, Potemski M, Revcolevschi A, van Loosdrecht P (2009) Magneto-optical readout of dark exciton distribution in cuprous oxide. Phys Rev B 80(4):045208

    Article  Google Scholar 

  6. Mageshwari K, Sathyamoorthy R (2013) Flower-shaped CuO nanostructures: synthesis, characterization and antimicrobial activity. J Mater Sci Technol 29(10):909–914

    Article  CAS  Google Scholar 

  7. Kondo J (1998) Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chem Commun 3:357–358

    Google Scholar 

  8. de Jongh PE, Vanmaekelbergh D, Kelly JJ (1999) Cu2O: a catalyst for the photochemical decomposition of water? Chem Commun 12:1069–1070

    Article  Google Scholar 

  9. White B, Yin M, Hall A, Le D, Stolbov S, Rahman T, Turro N, O’Brien S (2006) Complete CO oxidation over Cu2O nanoparticles supported on silica gel. Nano Lett 6(9):2095–2098

    Article  CAS  Google Scholar 

  10. Wang Y, Liu L, Cai Y, Chen J, Yao J (2013) Preparation and photocatalytic activity of cuprous oxide/carbon nanofibres composite films. Appl Surf Sci 270:245–251

    Article  CAS  Google Scholar 

  11. Mageshwari K, Sathyamoorthy R, Park J (2015) Photocatalytic activity of hierarchical CuO microspheres synthesized by facile reflux condensation method. Powder Technol 278:150–156

    Article  CAS  Google Scholar 

  12. Wang K, Dong X, Zhao C, Qian X, Xu Y (2015) Facile synthesis of Cu2O/CuO/RGO nanocomposite and its superior cyclability in supercapacitor. Electrochim Acta 152:433–442

    Article  CAS  Google Scholar 

  13. Zhou X, Shi J, Liu Y, Su Q, Zhang J, Du G (2014) Microwave-assisted synthesis of hollow CuO–Cu2O nanosphere/graphene composite as anode for lithium-ion battery. J Alloys Compd 615:390–394

    Article  CAS  Google Scholar 

  14. Zhou LJ, Zou YC, Zhao J, Wang PP, Feng LL, Sun LW, Wang DJ, Li GD (2013) Facile synthesis of highly stable and porous Cu2O/CuO cubes with enhanced gas sensing properties. Sens Actuators B 188:533–539

    Article  CAS  Google Scholar 

  15. Medina-Valtierra J, Ramírez-Ortiz J, Arroyo-Rojas VM, Ruiz F (2003) Cyclohexane oxidation over Cu2O–CuO and CuO thin films deposited by CVD process on fiberglass. Appl Catal A 238(1):1–9

    Article  CAS  Google Scholar 

  16. Ohya S, Kaneco S, Katsumata H, Suzuki T, Ohta K (2009) Electrochemical reduction of CO2 in methanol with aid of CuO and Cu2O. Catal Today 148(3):329–334

    Article  CAS  Google Scholar 

  17. Choi CH, Chung J, Woo SI (2014) Photoelectrochemical production of formic acid and methanol from carbon dioxide on metal-decorated CuO/Cu2O-layered thin films under visible light irradiation. Appl Catal B 158:217–223

    Google Scholar 

  18. Itoh T, Maki K (2007) Growth process of CuO (111) and Cu2O (001) thin films on MgO (001) substrate under metal-mode condition by reactive dc-magnetron sputtering. Vacuum 81(9):1068–1076

    Article  CAS  Google Scholar 

  19. Wu HW, Lee SY, Lu WC, Chang K-S (2015) Piezoresistive effects enhanced the photocatalytic properties of Cu2O/CuO nanorods. Appl Surf Sci 344:236–241

    Article  CAS  Google Scholar 

  20. Wang S, Li P, Zhu H, Tang W (2012) Controllable synthesis and photocatalytic property of uniform CuO/Cu2O composite hollow microspheres. Powder Technol 230:48–53

    Article  CAS  Google Scholar 

  21. Yuan L, Yin Q, Wang Y, Zhou G (2013) CuO reduction induced formation of CuO/Cu2O hybrid oxides. Chem Phys Lett 590:92–96

    Article  CAS  Google Scholar 

  22. Wang RC, Lin HY (2012) Efficient surface enhanced Raman scattering from Cu2O porous nanowires transformed from CuO nanowires by plasma treatments. Mater Chem Phys 136(2):661–665

    Article  CAS  Google Scholar 

  23. Zhu J, Bi H, Wang Y, Wang X, Yang X, Lu L (2008) Solution-phase synthesis of Cu2O cubes using CuO as a precursor. Mater Lett 62(14):2081–2083

    Article  Google Scholar 

  24. Behnoudnia F, Dehghani H (2013) Copper(II) oxalate nanospheres and its usage in preparation of Cu(OH)2, Cu2O and CuO nanostructures: synthesis and growth mechanism. Polyhedron 56:102–108

    Article  CAS  Google Scholar 

  25. Toboonsung B, Singjai P (2012) A flexible angle sensor made from MWNT/CuO/Cu2O nanocomposite films deposited by an electrophoretic co-deposition process. J Alloys Compd 533:62–66

    Article  CAS  Google Scholar 

  26. Yang H, Ouyang J, Tang A, Xiao Y, Li X, Dong X, Yu Y (2006) Electrochemical synthesis and photocatalytic property of cuprous oxide nanoparticles. Mater Res Bull 41(7):1310–1318

    Article  CAS  Google Scholar 

  27. Joseph S, Kamath PV (2008) Electrochemical deposition of Cu2O on stainless steel substrates: promotion and suppression of oriented crystallization. Solid State Sci 10(9):1215–1221

    Article  CAS  Google Scholar 

  28. Caballero-Briones F, Palacios-Padrós A, Calzadilla O, Sanz F (2010) Evidence and analysis of parallel growth mechanisms in Cu2O films prepared by Cu anodization. Electrochim Acta 55(14):4353–4358

    Article  CAS  Google Scholar 

  29. He JB, Lu DY, Jin GP (2006) Potential dependence of cuprous/cupric duplex film growth on copper electrode in alkaline media. Appl Surf Sci 253(2):689–697

    Article  CAS  Google Scholar 

  30. Wijesundera R (2010) Fabrication of the CuO/Cu2O heterojunction using an electrodeposition technique for solar cell applications. Semicond Sci Technol 25(4):045015

    Article  Google Scholar 

  31. Heli H, Jafarian M, Mahjani M, Gobal F (2004) Electro-oxidation of methanol on copper in alkaline solution. Electrochim Acta 49(27):4999–5006

    Article  CAS  Google Scholar 

  32. Zhai Y, Fan H, Li Q, Yan W (2012) Morphology evolutions and optical properties of Cu2O films by an electrochemical deposition on flexible substrate. Appl Surf Sci 258(7):3232–3236

    Article  CAS  Google Scholar 

  33. Morin-Crini N, Crini G (2013) Environmental applications of water-insoluble β-cyclodextrin-epichlorohydrin polymers. Prog Polym Sci 38(2):344–368

    Article  CAS  Google Scholar 

  34. Han J, Xie K, Du Z, Zou W, Zhang C (2015) β-Cyclodextrin functionalized polystyrene porous monoliths for separating phenol from wastewater. Carbohydr Polym 120:85–91

    Article  CAS  Google Scholar 

  35. Guo Y, Guo S, Li J, Wang E, Dong S (2011) Cyclodextrin-graphene hybrid nanosheets as enhanced sensing platform for ultrasensitive determination of carbendazim. Talanta 84(1):60–64

    Article  CAS  Google Scholar 

  36. Ozmen EY, Sezgin M, Yilmaz A, Yilmaz M (2008) Synthesis of β-cyclodextrin and starch based polymers for sorption of azo dyes from aqueous solutions. Bioresour Technol 99(3):526–531

    Article  CAS  Google Scholar 

  37. Ozmen EY, Yilmaz M (2007) Use of β-cyclodextrin and starch based polymers for sorption of Congo red from aqueous solutions. J Hazard Mater 148(1):303–310

    Article  CAS  Google Scholar 

  38. Yuan W, Shen J, Li L, Liu X, Zou H (2014) Preparation of POSS-poly (ɛ-caprolactone)-β- cyclodextrin/Fe3O4 hybrid magnetic micelles for removal of bisphenol A from water. Carbohydr Polym 113:353–361

    Article  CAS  Google Scholar 

  39. Sun M, Luo Y, Christie P, Jia Z, Li Z, Teng Y (2012) Methyl-β-cyclodextrin enhanced biodegradation of polycyclic aromatic hydrocarbons and associated microbial activity in contaminated soil. J Environ Sci 24(5):926–933

    Article  Google Scholar 

  40. Jurecska L, Dobosy P, Barkács K, Fenyvesi É, Záray G (2014) Characterization of cyclodextrin containing nanofilters for removal of pharmaceutical residues. J Pharm Biomed Anal 98:90–93

    Article  CAS  Google Scholar 

  41. Fan L, Li M, Lv Z, Sun M, Luo C, Lu F, Qiu H (2012) Fabrication of magnetic chitosan nanoparticles grafted with β-cyclodextrin as effective adsorbents toward hydroquinol. Colloids Surf B 95:42–49

    Article  Google Scholar 

  42. Pan J, Zou X, Wang X, Guan W, Li C, Yan Y, Wu X (2011) Adsorptive removal of 2,4-didichlorophenol and 2,6-didichlorophenol from aqueous solution by β-cyclodextrin/attapulgite composites: equilibrium, kinetics and thermodynamics. Chem Eng J 166:40–48

    Article  CAS  Google Scholar 

  43. Velusamy P, Pitchaimuthu S, Rajalakshmi S, Kannan N (2014) Modification of the photocatalytic activity of TiO2 by β-cyclodextrin in decoloration of ethyl violet dye. J Adv Res 5(1):19–25

    Article  CAS  Google Scholar 

  44. Khaoulani S, Chaker H, Cadet C, Bychkov E, Cherif L, Bengueddach A, Fourmentin S (2015) Wastewater treatment by cyclodextrin polymers and noble metal/mesoporous TiO2 photocatalysts. Comptes Rendus Chim 18(1):23–31

    Article  CAS  Google Scholar 

  45. Wang G, Xue X, Li H, Wu F, Deng N (2007) β-Cyclodextrin-enhanced photodegradation of bis (4-hydroxyphenyl) ethane under UV irradiation. J Mol Catal A 276(1):143–149

    Article  CAS  Google Scholar 

  46. Wang HL, Li Y, Pang L, Zhang WZ, Jiang WF (2013) Preparation and application of thermosensitive poly (NIPAM-co-MAH-β-CD)/(TiO2-MWCNTs) composites for photocatalytic degradation of dinitro butyl phenol (DNBP) under visible light irradiation. Appl Catal B 130:132–142

    Article  Google Scholar 

  47. Li Y, Gao Y, Li Y, Liu S, Zhang H, Su X (2014) A novel fluorescence probing strategy based on mono-[6-(2-aminoethylamino)-6-deoxy]-β-cyclodextin functionalized graphene oxide for the detection of amantadine. Sens Actuators B 202:323–329

    Article  CAS  Google Scholar 

  48. May B, Kean S, Easton C, Lincoln S (1997) Preparation and characterization of 6A-polyamine-mono-substituted β-cyclodextrins. J Chem Soc Perkin Trans 1(21):3157–3160

    Article  Google Scholar 

  49. Mohamed MH, Wilson LD, Headley JV (2011) Design and characterization of novel β-cyclodextrin based copolymer materials. Carbohydr Res 346(2):219–229

    Article  CAS  Google Scholar 

  50. Liu YY, Fan XD, Gao L (2003) Synthesis and characterization of β-cyclodextrin based functional monomers and its copolymers with N-isopropylacrylamide. Macromol Biosci 3(12):715–719

    Article  CAS  Google Scholar 

  51. Yu Y, Du FP, Jimmy CY, Zhuang YY, Wong PK (2004) One-dimensional shape-controlled preparation of porous Cu2O nano-whiskers by using CTAB as a template. J Solid State Chem 177(12):4640–4647

    Article  CAS  Google Scholar 

  52. Khan SB, Chani MTS, Karimov KS, Asiri AM, Bashir M, Tariq R (2014) Humidity and temperature sensing properties of copper oxide–Si-adhesive nanocomposite. Talanta 120:443–449

    Article  CAS  Google Scholar 

  53. Zussman E, Chen X, Ding W, Calabri L, Dikin D, Quintana J, Ruoff R (2005) Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers. Carbon 43(10):2175–2185

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC, U1407110, 21076054, and 21174001) and the Natural Science Important Foundation of Educational Commission of Anhui Province (2010AJZR-85 and 2011AJZR-87).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guan-Ping Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, FP., Jin, GP., Su, JY. et al. Electrochemical preparation of uniform CuO/Cu2O heterojunction on β-cyclodextrin-modified carbon fibers. J Appl Electrochem 46, 379–388 (2016). https://doi.org/10.1007/s10800-016-0926-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-0926-4

Keywords

Navigation