Skip to main content
Log in

Nanocomposites of zeolitic imidazolate frameworks on graphene oxide for pseudocapacitor applications

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Nanocomposites consisting of zeolitic imidazolate framework nanocrystals on graphene oxide (ZIF/GO) are prepared by a facile ultrasonic method under ambient conditions. Brunauer–Emmett–Teller specific surface area measurements show that surface areas of the graphene composites are greatly increased by the addition of the ZIF component. Electrochemical properties of the nanocrystal-modified electrodes are measured by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy in 6 M KOH electrolyte. Nanocomposites of ZIF-8/GO and ZIF-67/GO exhibit high specific capacitance values up to 400 and 252 F g−1, respectively, much higher than that of each ZIF by itself. In addition to the good pseudocapacitive behavior, they exhibit excellent cycling performance, indicating that the ZIF nanoparticles grown on the surface of GO are beneficial to improving electrochemical properties.

Graphical Abstract

The ZIF nanocrystals grown on the surface of GO were beneficial to improving the electrochemical performance of the electrode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhou H-C, Long JR, Yaghi OM (2012) Introduction to metal–organic frameworks. Chem Rev 112(2):673–674

    Article  CAS  Google Scholar 

  2. Férey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 37(1):191–214

    Article  Google Scholar 

  3. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal–organic frameworks. Science 341(6149):1230444

    Article  Google Scholar 

  4. Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT (2011) Metal-organic framework materials as chemical sensors. Chem Rev 112(2):1105–1125

    Article  Google Scholar 

  5. Ma S, Zhou H-C (2010) Gas storage in porous metal–organic frameworks for clean energy applications. Chem Commun 46(1):44–53

    Article  CAS  Google Scholar 

  6. Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Metal–organic framework materials as catalysts. Chem Soc Rev 38(5):1450–1459

    Article  CAS  Google Scholar 

  7. Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM (2003) Hydrogen storage in microporous metal–organic frameworks. Science 300(5622):1127–1129

    Article  CAS  Google Scholar 

  8. Díaz R, Orcajo MG, Botas JA, Calleja G, Palma J (2012) Co8-MOF-5 as electrode for supercapacitors. Mater Lett 68:126–128

    Article  Google Scholar 

  9. Brezesinski T, Wang J, Tolbert SH, Dunn B (2010) Ordered mesoporous [alpha]-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat Mater 9(2):146–151

    Article  CAS  Google Scholar 

  10. Boukhalfa S, Evanoff K, Yushin G (2012) Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes. Energy Environ Sci 5(5):6872–6879

    Article  CAS  Google Scholar 

  11. Xu G, Zheng C, Zhang Q, Huang J, Zhao M, Nie J, Wang X, Wei F (2011) Binder-free activated carbon/carbon nanotube paper electrodes for use in supercapacitors. Nano Res 4(9):870–881

    Article  CAS  Google Scholar 

  12. Lang J-W, Yan X-B, Yuan X-Y, Yang J, Xue Q-J (2011) Study on the electrochemical properties of cubic ordered mesoporous carbon for supercapacitors. J Power Sources 196(23):10472–10478

    Article  CAS  Google Scholar 

  13. Hu S, Zhang S, Pan N, Hsieh Y-L (2014) High energy density supercapacitors from lignin derived submicron activated carbon fibers in aqueous electrolytes. J Power Sources 270:106–112

    Article  CAS  Google Scholar 

  14. Wang H, Liang Y, Mirfakhrai T, Chen Z, Casalongue HS, Dai H (2011) Advanced asymmetrical supercapacitors based on graphene hybrid materials. Nano Res 4(8):729–736

    Article  CAS  Google Scholar 

  15. Hu L, Chen W, Xie X, Liu N, Yang Y, Wu H, Yao Y, Pasta M, Alshareef HN, Cui Y (2011) Symmetrical MnO2-carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading. ACS Nano 5(11):8904–8913

    Article  CAS  Google Scholar 

  16. Chen P, Chen H, Qiu J, Zhou C (2010) Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates. Nano Res 3(8):594–603

    Article  CAS  Google Scholar 

  17. Wang Y, Zhang HJ, Lu L, Stubbs LP, Wong CC, Lin J (2010) Designed functional systems from peapod-like Co@carbon to Co3O4@carbon nanocomposites. ACS Nano 4(8):4753–4761

    Article  CAS  Google Scholar 

  18. Gómez H, Ram MK, Alvi F, Villalba P, Stefanakos EL, Kumar A (2011) Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors. J Power Sources 196(8):4102–4108

    Article  Google Scholar 

  19. Singh A, Chandra A (2013) Graphite oxide/polypyrrole composite electrodes for achieving high energy density supercapacitors. J Appl Electrochem 43(8):773–782

    Article  CAS  Google Scholar 

  20. Rakhi R, Chen W, Cha D, Alshareef H (2011) High performance supercapacitors using metal oxide anchored graphene nanosheet electrodes. J Mater Chem 21(40):16197–16204

    Article  CAS  Google Scholar 

  21. Singh A, Chandra A (2013) Graphene and graphite oxide based composites for application in energy systems. Phys Status Solidi (B) 250(8):1483–1487

    Article  CAS  Google Scholar 

  22. Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, Yaghi OM (2008) High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319(5865):939–943

    Article  CAS  Google Scholar 

  23. Li Y, Fu ZY, Su BL (2012) Hierarchically structured porous materials for energy conversion and storage. Adv Funct Mater 22(22):4634–4667

    Article  CAS  Google Scholar 

  24. Li C, Hu C, Zhao Y, Song L, Zhang J, Huang R, Qu L (2014) Decoration of graphene network with metal–organic frameworks for enhanced electrochemical capacitive behavior. Carbon 78:231–242

    Article  CAS  Google Scholar 

  25. Campagnol N, Romero-Vara R, Deleu W, Stappers L, Binnemans K, De Vos DE, Fransaer J (2014) A Hybrid Supercapacitor based on Porous Carbon and the Metal-Organic Framework MIL-100 (Fe). ChemElectroChem 1(7):1182–1188

    Article  CAS  Google Scholar 

  26. Wang L, Han Y, Feng X, Zhou J, Qi P, Wang B (2015) Metal-organic frameworks for energy storage: batteries and supercapacitors. Coord Chem Rev 307:361–381

    Article  Google Scholar 

  27. Gedanken A (2004) Using sonochemistry for the fabrication of nanomaterials. Ultrason Sonochem 11(2):47–55

    Article  CAS  Google Scholar 

  28. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339

    Article  CAS  Google Scholar 

  29. Qian Y, Ismail IM, Stein A (2014) Ultralight, high-surface-area, multifunctional graphene-based aerogels from self-assembly of graphene oxide and resol. Carbon 68:221–231

    Article  CAS  Google Scholar 

  30. Qian J, Sun F, Qin L (2012) Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Mater Lett 82:220–223

    Article  CAS  Google Scholar 

  31. Zhao B, Liu P, Jiang Y, Pan D, Tao H, Song J, Fang T, Xu W (2012) Supercapacitor performances of thermally reduced graphene oxide. J Power Sources 198:423–427

    Article  CAS  Google Scholar 

  32. Torad NL, Hu M, Kamachi Y, Takai K, Imura M, Naito M, Yamauchi Y (2013) Facile synthesis of nanoporous carbons with controlled particle sizes by direct carbonization of monodispersed ZIF-8 crystals. Chem Commun 49(25):2521–2523

    Article  CAS  Google Scholar 

  33. Gross AF, Sherman E, Vajo JJ (2012) Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidizolate frameworks. Dalton Trans 41(18):5458–5460

    Article  CAS  Google Scholar 

  34. Cravillon J, Münzer S, Lohmeier S-J, Feldhoff A, Huber K, Wiebcke M (2009) Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem Mater 21(8):1410–1412

    Article  CAS  Google Scholar 

  35. Wu H, Zhou W, Yildirim T (2007) Hydrogen storage in a prototypical zeolitic imidazolate framework-8. J Am Chem Soc 129(17):5314–5315

    Article  CAS  Google Scholar 

  36. Venna SR, Jasinski JB, Carreon MA (2010) Structural evolution of zeolitic imidazolate framework-8. J Am Chem Soc 132(51):18030–18033

    Article  CAS  Google Scholar 

  37. Fan L, Tang L, Gong H, Yao Z, Guo R (2012) Carbon-nanoparticles encapsulated in hollow nickel oxides for supercapacitor application. J Mater Chem 22(32):16376–16381

    Article  CAS  Google Scholar 

  38. Yang J, Zheng C, Xiong P, Li Y, Wei M (2014) Zn-doped Ni-MOF material with a high supercapacitive performance. J Mater Chem A 2(44):19005–19010

    Article  CAS  Google Scholar 

  39. Gao Y, Wu J, Zhang W, Tan Y, Gao J, Tang B, Zhao J (2014) Synthesis of nickel carbonate hydroxide/zeolitic imidazolate framework-8 as a supercapacitors electrode. RSC Adv 4(68):36366–36371

    Article  CAS  Google Scholar 

  40. Zhang D, Shi H, Zhang R, Zhang Z, Wang N, Li J, Yuan B, Bai H, Zhang J (2015) Quick synthesis of zeolitic imidazolate framework microflowers with enhanced supercapacitor and electrocatalytic performances. RSC Adv 5(72):58772–58776

    Article  CAS  Google Scholar 

  41. Meher SK, Justin P, Ranga Rao G (2011) Microwave-mediated synthesis for improved morphology and pseudocapacitance performance of nickel oxide. ACS Appl Mater Interfaces 3(6):2063–2073

    Article  CAS  Google Scholar 

  42. Hu B, Qin X, Asiri AM, Alamry KA, Al-Youbi AO, Sun X (2013) Fabrication of Ni(OH)2 nanoflakes array on Ni foam as a binder-free electrode material for high performance supercapacitors. Electrochim Acta 107:339–342

    Article  CAS  Google Scholar 

  43. Zhang W, Tan Y, Gao Y, Wu J, Tang B (2015) Synthesis of amorphous cobalt-boron alloy/highly ordered mesoporous carbon nanofiber arrays as advanced pseudocapacitor material. J Solid State Electrochem 19(2):593–598

    Article  CAS  Google Scholar 

  44. Gao Y, Wu J, Zhang W, Tan Y, Gao J, Zhao J, Tang B (2015) Synthesis of nickel oxalate/zeolitic imidazolate framework-67 (NiC2O4/ZIF-67) as a supercapacitor electrode. New J Chem 39(1):94–97

    Article  CAS  Google Scholar 

  45. Ganesh V, Pitchumani S, Lakshminarayanan V (2006) New symmetric and asymmetric supercapacitors based on high surface area porous nickel and activated carbon. J Power Sources 158(2):1523–1532

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A part of this work was supported by the Shanghai Municipal Education Commission (High-energy Beam Intelligent Processing and Green Manufacturing). A part of this work was supported by the University of Minnesota Initiative for Renewable Energy and the Environment (IREE). Parts of this work were carried out in the Characterization Facility, University of Minnesota, which receives partial support from the NSF through the MRSEC program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bohejin Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Tan, Y., Gao, Y. et al. Nanocomposites of zeolitic imidazolate frameworks on graphene oxide for pseudocapacitor applications. J Appl Electrochem 46, 441–450 (2016). https://doi.org/10.1007/s10800-016-0921-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-0921-9

Keywords

Navigation