Skip to main content
Log in

Anodic deposition of CoOOH films with excellent performance for electrochemical capacitors

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Amorphous CoOOH films were fabricated on hexagonal graphite substrates in 0.2 M CoSO4 at a constant anodic deposition potential of 1.60 V vs Ag/AgCl (3 M KCl) under different deposition temperatures, and their electrochemical behaviors in 1 M NaOH and 1 M NaCl were systematically studied. The results showed that the deposition temperature had a significant effect on the electrochemical behaviors of the CoOOH films. For the four CoOOH films prepared under different deposition temperatures, when tested either in 1 M NaOH or 1 M NaCl, their area specific capacitance (C A) and cycle stability increased monotonously, their mass specific capacitance (C M) first increased and then decreased, while their bulk resistance (R bulk) and charge-transfer resistance (R ct) first decreased and then increased with increasing deposition temperature. In addition, the CoOOH films had high C M, good electrical conductivity, low faradic charge-transfer resistance, and low diffusive resistance. Among the four CoOOH films fabricated under different deposition temperatures, the film prepared under a deposition temperature of 45 °C (Sample 3) had the highest C M, the lowest R bulk, the lowest R ct, and good rate capability which can be ascribed to its structure with nanoparticles and nodules on its surface as well as its appropriate thickness. As a result, the CoOOH film fabricated by anodic deposition is a very promising electrochemical capacitor material for applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cui L, Li J, Zhang XG (2009) Preparation and properties of Co3O4 nanorods as supercapacitor material. J Appl Electrochem 39:1871–1876

    Article  CAS  Google Scholar 

  2. Lokhande CD, Dubal DP, Joo OS (2011) Metal oxide thin film based supercapacitors. Curr Appl Phys 11:255–270

    Article  Google Scholar 

  3. Wang LQ, Li XC, Guo TM et al (2014) Three-dimensional Ni(OH)2 nanoflakes/graphene/nickel foam electrode with high rate capability for supercapacitor applications. Int J Hydrog Energy 39:7876–7884

    Article  CAS  Google Scholar 

  4. Wang GP, Zhang L, Zhang JJ (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  5. Wei WF, Cui XW, Chen WX et al (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697–1721

    Article  CAS  Google Scholar 

  6. Bolagam R, Boddula R, Srinivasan P (2015) Synthesis of highly crystalline polyaniline with the use of (Cyclohexylamino)-1-propanesulfonic acid for supercapacitor. J Appl Electrochem 45:51–56

    Article  CAS  Google Scholar 

  7. Li Q, Wang ZL, Li GR et al (2012) Design and synthesis of MnO2/Mn/MnO2 sandwich-structured nanotube arrays with high supercapacitive performance for electrochemical energy storage. Nano Lett 12:3803–3807

    Article  CAS  Google Scholar 

  8. Dhaouadi H, Madani A, Touati F (2010) Synthesis and spectroscopic investigations of Mn3O4 nanoparticles. Mater Lett 64:2395–2398

    Article  CAS  Google Scholar 

  9. Pramod KS, Whittingham MS (2001) The role of tetraethyl ammonium hydroxide on the phase determination and electrical properties of γ-MnOOH synthesized by hydrothermal. Mater Lett 48:319–323

    Article  Google Scholar 

  10. Kamioka N, Ichitsubo T, Uda T et al (2008) Synthesis of spinel-type magnesium cobalt oxide and its electrical conductivity. Mater Trans 49:824–828

    Article  CAS  Google Scholar 

  11. Osuwa JC, Onyejiuwa GI (2013) Structural and electrical properties of annealed nickel oxide (NiO) thin films prepared by chemical bath deposition. J Ovonic Res 9:9–15

    CAS  Google Scholar 

  12. Chena HL, Lub YM, Hwang WS (2005) Characterization of sputtered NiO thin films. Surf Coat Technol 198:138–142

    Article  CAS  Google Scholar 

  13. Oshitani M, Yufu H, Takashima K et al (1989) Development of a pasted nickel electrode with high active material utilization. J Electrochem Soc 136:1590–1593

    Article  CAS  Google Scholar 

  14. Deabate S, Henn F, Devautour S et al (2003) Conductivity and dielectric relaxation in various Ni(OH)2 samples. J Electrochem Soc 150:J23–J31

    Article  CAS  Google Scholar 

  15. Benmoussa M, Ibnouelghazi E, Bennouna A et al (1995) Structural, electrical and optical properties of sputtered vanadium pent oxide thin films. Thin Solid Films 265:22–28

    Article  CAS  Google Scholar 

  16. Vemuri RS, Bharathi KK, Gullapalli SK et al (2010) Effect of Structure and Size on the Electrical Properties of Nanocrystalline WO3 Films. ACS Appl Mater Interfaces 2:2623–2628

    Article  CAS  Google Scholar 

  17. Pandit AK, Prasad M, Ansari TH et al (1991) Electrical conduction in molybdenum trioxide single crystal. Solid State Commun 80:125–127

    Article  CAS  Google Scholar 

  18. Liu YQ, Gao L (2005) A study of the electrical properties of carbon nanotube-NiFe2O4 composites: effect of the surface treatment of the carbon nanotubes. Carbon 43:47–52

    Article  CAS  Google Scholar 

  19. Kim KS, Park SJ (2011) Synthesis of nano-scale coated manganese oxide on graphite nanofibers and their high electrochemical performance. Synth Met 161:1966–1971

    Article  CAS  Google Scholar 

  20. Reddy ALM, Shaijumon MM, Gowda SR et al (2010) Multisegmented Au-MnO2/Carbon nanotube hybrid coaxial arrays for high-power supercapacitor applications. J Phys Chem C 114:658–663

    Article  CAS  Google Scholar 

  21. Sharma RK, Rastogi AC, Desu SB (2008) Manganese oxide embedded polypyrrole nanocomposites for electrochemical supercapacitor. Electrochim Acta 53:7690–7695

    Article  CAS  Google Scholar 

  22. Liu R, Lee SB (2008) MnO2/Poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage. J Am Chem Soc 130:2942–2943

    Article  CAS  Google Scholar 

  23. Kang JL, Hirata A, Kang LJ et al (2013) Enhanced supercapacitor performance of MnO2 by atomic doping. Angew Chem 125:1708–1711

    Article  Google Scholar 

  24. Zhang GN, Zheng L, Zhang M et al (2012) Preparation of Ag-nanoparticle-loaded MnO2 nanosheets and their capacitance behavior. Energy Fuels 26:618–623

    Article  CAS  Google Scholar 

  25. Naoi K, Simon P (2008) New materials and new configurations for advanced electrochemical capacitors. J Electrochem Soc 17:34–37

    CAS  Google Scholar 

  26. Liu YX, Masumoto H, Goto T (2004) Electrical and optical properties of IrO2 thin films prepared by laser-ablation. Mater Trans 45:3023–3027

    Article  CAS  Google Scholar 

  27. Liu DQ, Yu SH, Son SW et al (2008) Electrochemical performance of Iridium oxide thin film for supercapacitor prepared by radio frequency magnetron sputtering method. ECS Trans 16:103–109

    Article  CAS  Google Scholar 

  28. Guo D, Shangguan E, Li J et al (2014) Effects of γ-CoOOH coating on the high-temperature and high-rate performances of spherical nickel hydroxide electrodes. Int J Hydrog Energy 39:3895–3903

    Article  CAS  Google Scholar 

  29. Hu WK, Gao XP, Geng MM et al (2005) Synthesis of CoOOH nanorods and application as coating materials of nickel hydroxide for high temperature Ni-MH cells. J Phys Chem B 109:5392–5394

    Article  CAS  Google Scholar 

  30. Chen WH, Yang YF, Shao HX (2011) Cation-exchange induced high power electrochemical properties of core–shell Ni(OH)2@CoOOH. J Power Sources 196:488–494

    Article  CAS  Google Scholar 

  31. Hosono E, Fujihara S, Honma I et al (2006) Synthesis of the CoOOH fine nanoflake film with the high rate capacitance property. J Power Sources 158:779–783

    Article  CAS  Google Scholar 

  32. Wang MM, Ren WZ, Zhao YN et al (2014) Synthesis of nanostructured CoOOH film with high electrochemical performance for application in supercapacitor. J Nanopart Res 16:1–7

    Google Scholar 

  33. Jagadale AD, Dubal DP, Lokhande CD (2012) Electrochemical behavior of potentiodynamically deposited cobalt oxyhydroxide (CoOOH) thin films for supercapacitor application. Mater Res Bull 47:672–676

    Article  CAS  Google Scholar 

  34. Pauporté T, Mendoza L, Cassir M et al (2005) Direct low-temperature deposition of crystallized CoOOH films by potentiostatic electrolysis. J Electrochem Soc 152:C49–C53

    Article  CAS  Google Scholar 

  35. Dubal DP, Dhawale DS, Salunkhe RR et al (2010) A novel chemical synthesis of Mn3O4 thin film and its stepwise conversion into birnessite MnO2 during super capacitive studies. J Electroanal Chem 647:60–65

    Article  CAS  Google Scholar 

  36. More AM, Gujar TP, Gunjakar JL et al (2008) Growth of TiO2 nanorods by chemical bath deposition method. Appl Surf Sci 255:2682–2687

    Article  CAS  Google Scholar 

  37. Casella IG, Gatta M (2002) Study of the electrochemical deposition and properties of cobalt oxide species in citrate alkaline solutions. J Electroanal Chem 534:31–38

    Article  CAS  Google Scholar 

  38. Huang JH, Kargl-Simard C, Oliazadeh M et al (2004) pH-Controlled precipitation of cobalt and molybdenum from industrial waste effluents of a cobalt electrodeposition process. Hydrometallurgy 75:77–90

    Article  CAS  Google Scholar 

  39. Liu TC, Pell WG, Conway BE et al (1999) Stages in the development of thick cobalt oxide films exhibiting reversible redox behavior and pseudocapacitance. Electrochim Acta 44:2829–2842

    Article  CAS  Google Scholar 

  40. Shao YY, Wang J, Wu H et al (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanal 22:1027–1036

    Article  CAS  Google Scholar 

  41. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  42. Nagarajan N, Cheong M, Zhitomirsky I (2007) Electrochemical capacitance of MnOx films. Mater Chem Phys 103:47–53

    Article  CAS  Google Scholar 

  43. Cross A, Morel A, Cormie A et al (2011) Enhanced manganese oxide supercapacitor electrodes produced by electrodeposition. J Power Sources 196:7847–7853

    Article  CAS  Google Scholar 

  44. Lei ZB, Zhang JT, Zhao XS (2012) Ultrathin MnO2 nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes. J Mater Chem 22:153–160

    Article  CAS  Google Scholar 

  45. Jena A, Munichandraiah N, Shivashankar SA (2012) Morphology controlled growth of meso-porous Co3O4 nanostructures and study of their electrochemical capacitive behavior. J Electrochem Soc 159:A1682–A1689

    Article  CAS  Google Scholar 

  46. Ghimbeu CM, Malak-Polaczyk A, Frackowiak E et al (2014) Template-derived high surface area λ-MnO2 for supercapacitor applications. J Appl Electrochem 44:123–132

    Article  CAS  Google Scholar 

  47. Li JT, Zhao W, Huang FQ et al (2011) Single-crystalline Ni(OH)2 and NiO nanoplatelet arrays as supercapacitor electrodes. Nanoscale 3:5103–5109

    Article  CAS  Google Scholar 

  48. Brousse T, Bélanger D, Long JW (2015) To be or not to be pseudocapacitive? J Electrochem Soc 162:A5185–A5189

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Doctoral Fund of Southwest University of Science and Technology, China (08ZX7113) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baogang Guo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13206 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, B., Li, T. & Hu, H. Anodic deposition of CoOOH films with excellent performance for electrochemical capacitors. J Appl Electrochem 46, 403–421 (2016). https://doi.org/10.1007/s10800-016-0920-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-0920-x

Keywords

Navigation