Skip to main content

Advertisement

Log in

Preparation and electrochemical performance of attapulgite/citric acid template carbon electrode materials

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, mesoporous carbon materials were prepared through the hard template method with attapulgite and citric acid as the template and the carbon source, respectively. The morphology and structure of the as-prepared carbon materials were investigated via scanning electron microscopy, transmission electron microscopy, N2 adsorption/desorption technique, and powder X-ray diffraction. The as-prepared carbon materials replicated the nanorod structure of attapulgite. Furthermore, high-density mesopores were distributed on the surface of the as-prepared carbon materials. The carbon material ACA-700-3 exhibited a maximum specific surface area and total pore volume of 707 m2 g−1 and 1.22 cm3 g−1, respectively. The electrochemical performance and energy storage capacity of the carbon materials were evaluated using electrochemical tests. The maximum specific capacitance reached 182 F g−1 when the current density was 2 mA cm−2.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gao Y, Zhou YS, Qian M, He XN, Redepenning J, Goodman P, Li HM, Jiang L, Lu YF (2013) Chemical activation of carbon nano-onions for high-rate supercapacitor electrodes. Carbon 51:52–58. doi:10.1016/j.carbon.2012.08.009

    Article  CAS  Google Scholar 

  2. Burke A (2000) Ultracapacitors why, how, and where is the technology. J Power Sources 91:37–50

    Article  CAS  Google Scholar 

  3. Pan H, Li J, Feng YP (2010) Carbon nanotubes for supercapacitor. Nanoscale Res Lett 5(3):654–668

    Article  CAS  Google Scholar 

  4. Roberts AJ, Slade RCT (2010) Effect of specific surface area on capacitance in asymmetric carbon/α-MnO2 supercapacitors. Electrochim Acta 55(25):7460–7469. doi:10.1016/j.electacta.2010.01.004

    Article  CAS  Google Scholar 

  5. Wu Z-S, Ren W, Wang D-W, Li F, Liu B, Cheng H-M (2010) High energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4:5835–5842

    Article  CAS  Google Scholar 

  6. Xu B, Hou S, Duan H, Cao G, Chu M, Yang Y (2013) Ultramicroporous carbon as electrode material for supercapacitors. J Power Sources 228:193–197. doi:10.1016/j.jpowsour.2012.11.122

    Article  CAS  Google Scholar 

  7. Frackowiak E, Beguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950

    Article  CAS  Google Scholar 

  8. Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157(1):11–27. doi:10.1016/j.jpowsour.2006.02.065

    Article  CAS  Google Scholar 

  9. Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23(42):4828–4850. doi:10.1002/adma.201100984

    Article  CAS  Google Scholar 

  10. Su DS, Centi G (2013) A perspective on carbon materials for future energy application. J Energy Chem 22(2):151–173

    Article  CAS  Google Scholar 

  11. Xia K, Gao Q, Jiang J, Wang H (2013) An unusual method to prepare a highly microporous carbon for hydrogen storage application. Mater Lett 100:227–229

    Article  CAS  Google Scholar 

  12. Fang Y, Gu D, Zou Y, Wu Z, Li F, Che R, Deng Y, Tu B, Zhao D (2010) A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. Angew Chem Int Ed 49(43):7987–7991. doi:10.1002/anie.201002849

    Article  CAS  Google Scholar 

  13. Chen L-F, Zhang X-D, Liang H-W, Kong M, Guan Q-F, Chen P, Wu Z-Y, Yu S-H (2012) Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 6(8):7092–7102

    Article  CAS  Google Scholar 

  14. Brun N, Prabaharan SRS, Surcin C, Morcrette M, Deleuze H, Birot M, Babot O, Achard M-F, Backov R (2012) Design of hierarchical porous carbonaceous foams from a dual-template approach and their use as electrochemical capacitor and Li ion battery negative electrodes. J Phys Chem C 116(1):1408–1421. doi:10.1021/jp206487w

    Article  CAS  Google Scholar 

  15. Jin J, Tanaka S, Egashira Y, Nishiyama N (2010) KOH activation of ordered mesoporous carbons prepared by a soft-templating method and their enhanced electrochemical properties. Carbon 48(7):1985–1989. doi:10.1016/j.carbon.2010.02.005

    Article  CAS  Google Scholar 

  16. Sun L, Zhang X, Wang C, Qiu J, Zhou Y (2014) KOH-activated depleted fullerene soot for electrochemical double layer capacitors. J Appl Electrochem 44:309–316. doi:10.1007/s10800-013-0636-0

    Article  CAS  Google Scholar 

  17. Xia Y, Yang Z, Mokaya R (2010) Templated nanoscale porous carbons. Nanoscale 2(5):639–659. doi:10.1039/b9nr00207c

    Article  CAS  Google Scholar 

  18. Lee J, Yoon S, oh SM, Shin C-H, Hyeon T (2000) Development of a new mesoporous carbon using an HMS aluminosilicate template. Adv Mater 12(5):359–362

    Article  CAS  Google Scholar 

  19. Qie L, Chen W, Xu H, Xiong X, Jiang Y, Zou F, Hu X, Xin Y, Zhang Z, Huang Y (2013) Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ Sci 6(8):2497–2504

    Article  Google Scholar 

  20. Luo H, Zhang F, Zhao X, Sun Y, Du K, Feng H (2013) Preparation of mesoporous carbon materials used in electrochemical capacitor electrode by using natural zeolite template/maltose system. J Mater Sci Mater Electron 25(1):538–545. doi:10.1007/s10854-013-1621-4

    Article  CAS  Google Scholar 

  21. Lv Y, Zhang F, Dou Y, Zhai Y, Wang J, Liu H, Xia Y, Tu B, Zhao D (2012) A comprehensive study on KOH activation of ordered mesoporous carbons and their supercapacitor application. J Mater Chem 22(1):93. doi:10.1039/c1jm12742j

    Article  CAS  Google Scholar 

  22. He X, Li R, Han J, Yu M, Wu M (2013) Facile preparation of mesoporous carbons for supercapacitors by one-step microwave-assisted ZnCl2 activation. Mater Lett 94:158–160. doi:10.1016/j.matlet.2012.12.031

    Article  CAS  Google Scholar 

  23. Ozaki J, Endo N, Ohizumi W, Igarashi K, Nakahara M, Oya A (1997) Novel preparation method for the production of mesoporous carbon fiber from a polymer blend. Carbon 35(7):1031–1033

    Article  CAS  Google Scholar 

  24. Hu B, Wang K, Wu L, Yu SH, Antonietti M, Titirici MM (2010) Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater 22(7):813–828. doi:10.1002/adma.200902812

    Article  CAS  Google Scholar 

  25. Hanzawa Y, Kaneko K, Pekala RW, Dresselhaus MS (1996) Activated carbon aerogels. Langmuir ACS J Surf Coll 12(26):6167–6169

    Article  CAS  Google Scholar 

  26. Kyotani T (2000) Control of pore structure in carbon. Carbon 38(2):269–286

    Article  CAS  Google Scholar 

  27. Lv Y, Gan L, Liu M, Xiong W, Xu Z, Zhu D, Wright DS (2012) A self-template synthesis of hierarchical porous carbon foams based on banana peel for supercapacitor electrodes. J Power Sources 209:152–157

    Article  CAS  Google Scholar 

  28. Yoon S, Oh SM, Lee CW, Ryu JH (2011) Pore structure tuning of mesoporous carbon prepared by direct templating method for application to high rate supercapacitor electrodes. J Electroanalytical Chem 650(2):187–195. doi:10.1016/j.jelechem.2010.10.008

    Article  CAS  Google Scholar 

  29. Wu G-P, Yang J, Wang D, Xu R, Amine K, Lu C-X (2014) A novel route for preparing mesoporous carbon aerogels using inorganic templates under ambient drying. Mater Lett 115:1–4

    Article  CAS  Google Scholar 

  30. Lee J, Kim J, Hyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18(16):2073–2094. doi:10.1002/adma.200501576

    Article  CAS  Google Scholar 

  31. Hamada T, Suzuki K, Kohno T, Sugiura T (2002) Coke powder heat-treated with boron oxide using an Acheson furnace for lithium battery anodes. Carbon 40:2317–2322

    Article  CAS  Google Scholar 

  32. Rios RB, Silva FWM, Torres AEB, Azevedo DC, Cavalcante CL Jr (2009) Adsorption of methane in activated carbons obtained from coconut shells using H3PO4 chemical activation. Adsorption 15(3):271–277

    Article  CAS  Google Scholar 

  33. Li L-M, Liu E-H, Li J, Yang Y-J, Shen H-J, Huang Z-Z, Xiang X-X (2010) Polyaniline-based carbon for a supercapacitor electrode. Acta Phys Chim Sin 26(6):1521–1526

    CAS  Google Scholar 

  34. Buasri A, Pholprasert C, Suwunnakee N, Phuchainan T, Loryuenyong V (2013) Effects of carbonization temperature and nanoporous silica templating on the synthesis of porous carbon from commercial sugar. Adv Mater Res 650:113–118

    Article  Google Scholar 

  35. Sakintuna B, Yürüm Y (2006) Preparation and characterization of mesoporous carbons using a Turkish natural zeolitic template/furfuryl alcohol system. Microporous Mesoporous Mater 93(1–3):304–312. doi:10.1016/j.micromeso.2006.03.013

    Article  CAS  Google Scholar 

  36. Liu GY, Guo JM, Wang HJ, Li XM, Wang BS, He Y (2010) Porous carbon prepared by using diatomite as template and furfural alcohol as carbon source. J Honghe Univ 2:002

    Google Scholar 

  37. Li Y, Zhou Z, Gao X, Yan J (2007) A promising sol–gel route based on citric acid to synthesize Li3V2(PO4)3/carbon composite material for lithium ion batteries. Electrochim Acta 52(15):4922–4926. doi:10.1016/j.electacta.2007.01.019

    Article  CAS  Google Scholar 

  38. Wang J, Liu X-M, Yang H, X-d Shen (2011) Characterization and electrochemical properties of carbon-coated Li4Ti5O12 prepared by a citric acid sol–gel method. J Alloy Compd 509(3):712–718. doi:10.1016/j.jallcom.2010.07.215

    Article  CAS  Google Scholar 

  39. Yang S, Feng X, Mullen K (2011) Sandwich-like, graphene-based titania nanosheets with high surface area for fast lithium storage. Adv Mater 23(31):3575–3579. doi:10.1002/adma.201101599

    Article  CAS  Google Scholar 

  40. Li N, Liu G, Zhen C, Li F, Zhang L, Cheng H-M (2011) Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template-free self-assembly. Adv Funct Mater 21(9):1717–1722. doi:10.1002/adfm.201002295

    Article  CAS  Google Scholar 

  41. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KS (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87(9–10):1051–1069

    CAS  Google Scholar 

  42. Zhang X, Wang X, Su J, Wang X, Jiang L, Wu H, Wu C (2012) The effects of surfactant template concentration on the supercapacitive behaviors of hierarchically porous carbons. J Power Sources 199:402–408. doi:10.1016/j.jpowsour.2011.10.070

    Article  CAS  Google Scholar 

  43. Qie L, Chen WM, Wang ZH, Shao QG, Li X, Yuan LX, Hu XL, Zhang WX, Huang YH (2012) Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater 24(15):2047–2050

    Article  Google Scholar 

  44. Kakaei K (2015) Decoration of graphene oxide with platinum tin nanoparticles for ethanol oxidation. Electrochim Acta 165:330–337

    Article  CAS  Google Scholar 

  45. Kakaei K, Hasanpour K (2014) Synthesis of graphene oxide nanosheets by electrochemical exfoliation of graphite in cetyltrimethylammonium bromide and its application for oxygen reduction. J Mater Chem A 2(37):15428–15436

    Article  CAS  Google Scholar 

  46. Chen XY, Chen C, Zhang ZJ, Xie DH (2013) High performance porous carbon through hard–soft dual templates for supercapacitor electrodes. J Mater Chem A 1(25):7379. doi:10.1039/c3ta10841d

    Article  CAS  Google Scholar 

  47. Gharibi H, Kakaei K, Zhiani M (2010) Platinum nanoparticles supported by a Vulcan XC-72 and PANI doped with trifluoromethane sulfonic acid substrate as a new electrocatalyst for direct methanol fuel cells. J Phys Chem C 114(11):5233–5240

    Article  CAS  Google Scholar 

  48. Terrones M, Hsu W, Schilder A, Terrones H, Grobert N, Hare J, Zhu Y, Schwoerer M, Prassides K, Kroto H (1998) Novel nanotubes and encapsulated nanowires. Appl Phys A 66(3):307–317

    Article  CAS  Google Scholar 

  49. Kakaei K, Zhiani M (2013) A new method for manufacturing graphene and electrochemical characteristic of graphene-supported Pt nanoparticles in methanol oxidation. J Power Sources 225:356–363

    Article  CAS  Google Scholar 

  50. Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8(4):235–246

    Article  CAS  Google Scholar 

  51. Nemanich R, Solin S, Martin RM (1981) Light scattering study of boron nitride microcrystals. Phys Rev B 23(12):6348

    Article  CAS  Google Scholar 

  52. Casiraghi C, Robertson J, Ferrari AC (2007) Diamond-like carbon for data and beer storage. Mater Today 10(1):44–53

    Article  CAS  Google Scholar 

  53. Zhao X, Luo H, Du K, Zhang F, Li Y (2014) Application of attapulgite/maltose system on mesoporous carbon material preparation for electrochemical capacitors. J Appl Electrochem 44(6):719–725. doi:10.1007/s10800-014-0688-9

    Article  CAS  Google Scholar 

  54. Liu F, Song S, Xue D, Zhang H (2012) Folded structured graphene paper for high performance electrode materials. Adv Mater 24(8):1089–1094. doi:10.1002/adma.201104691

    Article  CAS  Google Scholar 

  55. Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin L-C (2011) Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon 49(9):2917–2925. doi:10.1016/j.carbon.2011.02.068

    Article  CAS  Google Scholar 

  56. Yun J, Kim D, Lee G, Ha JS (2014) All-solid-state flexible micro-supercapacitor arrays with patterned graphene/MWNT electrodes. Carbon 79:156–164. doi:10.1016/j.carbon.2014.07.055

    Article  CAS  Google Scholar 

  57. Wang X, Li X, Sun X, Li F, Liu Q, Wang Q, He D (2011) Nanostructured NiO electrode for high rate Li-ion batteries. J Mater Chem 21(11):3571. doi:10.1039/c0jm04356g

    Article  CAS  Google Scholar 

  58. Huang M, Zhao XL, Li F, Li W, Zhang B, Zhang YX (2015) Synthesis of Co3O 4/SnO2@ MnO2 core–shell nanostructures for high-performance supercapacitors. J Mater Chem A 3:12852–12857

    Article  CAS  Google Scholar 

  59. Fang D-L, Chen Z-D, Liu X, Wu Z-F, Zheng C-H (2012) Homogeneous growth of nano-sized β-Ni(OH)2 on reduced graphene oxide for high-performance supercapacitors. Electrochim Acta 81:321–329

    Article  CAS  Google Scholar 

  60. Zhang J, Jin L, Cheng J, Hu H (2013) Hierarchical porous carbons prepared from direct coal liquefaction residue and coal for supercapacitor electrodes. Carbon 55:221–232. doi:10.1016/j.carbon.2012.12.030

    Article  CAS  Google Scholar 

  61. Fan Z, Yan J, Zhi L, Zhang Q, Wei T, Feng J, Zhang M, Qian W, Wei F (2010) A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv Mater 22(33):3723–3728. doi:10.1002/adma.201001029

    Article  CAS  Google Scholar 

  62. Gao Y, Wu J, Zhang W, Tan Y, Gao J, Zhao J, Tang B (2014) The calcined zeolitic imidazolate framework-8 (ZIF-8) under different conditions as electrode for supercapacitor applications. J Solid State Electrochem 18(11):3203–3207. doi:10.1007/s10008-014-2578-9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21364004), Gansu Province University Fundamental Research Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JianQiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, H., Chen, Y., Mu, B. et al. Preparation and electrochemical performance of attapulgite/citric acid template carbon electrode materials. J Appl Electrochem 46, 299–307 (2016). https://doi.org/10.1007/s10800-016-0917-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-0917-5

Keywords

Navigation