Journal of Applied Electrochemistry

, Volume 46, Issue 2, pp 191–204 | Cite as

Effect of electrolysis parameters of Ni–Mo alloy on the electrocatalytic activity for hydrogen evaluation and their stability in alkali medium

  • Mert Manazoğlu
  • Gökçe Hapçı
  • Gökhan OrhanEmail author
Research Article
Part of the following topical collections:
  1. Hydrogen production


In this paper, NiMo coatings were electrochemically deposited on a copper electrode (Cu/NiMo) and on an electrodeposited nickel onto copper plate (Cu/Ni/NiMo) in citrate solutions. Effects of electrolyte composition, pH value, and temperature on hydrogen-evolution reaction (HER) as well as the electrochemical stability in alkaline solution were investigated, and the electrochemical activation energy was determined for the NiMo alloys. This was evaluated by the determination of kinetic and mechanism of HER in alkali medium by the polarization measurements, cyclic voltammetry, and electrochemical impedance spectroscopy techniques. The morphology and chemical composition of the electrodeposited Ni–Mo were investigated using SEM and EDS analyses. The results showed that the corresponding HER overpotential of the Ni–Mo film depends on alloy composition and surface morphology. As the wt% of Mo content in the alloy is increased, the onset potential of electrode for HER shifted in the positive direction favoring hydrogen generation with lower overpotential. The overall experimental data indicated that the porous Ni–Mo coating on electrodeposited nickel plate was obtained when the molybdenum content was ca. 41 wt%. This electrodes exhibited high catalytic activity in the HER (η 100 = −48 mV at 100 mA cm−2 and 80 °C), and their stability was tested by polarization measurements after different anodic and cathodic treatments in 1 M NaOH solution. Moreover, the corrosion behaviors of Ni and Cu/Ni/NiMo electrodes at open-circuit potential were also investigated, and their corrosion resistances were compared.

Graphical abstract


Electrodeposition Ni–Mo alloy Hydrogen evolution EIS measurements Water electrolysis 



The authors gratefully acknowledge the financial support of the Scientific Research Projects Coordination Unit of Istanbul University (Project Number 22847).


  1. 1.
    Veziroğlu TN, Barbir F (1992) Hydrogen: the wonder fuel. Int J Hydrogen Energy 17:391–404. doi: 10.1016/0360-3199(92)90183-W CrossRefGoogle Scholar
  2. 2.
    Veziroğlu TN, Sxahin S (2008) 21st Century’s energy hydrogen energy system. Energy Convers Manag 49(7):1820–1831. doi: 10.1016/j.enconman.2007.08.015 CrossRefGoogle Scholar
  3. 3.
    Döner A, Taşkesen E, Kardaş G (2014) Hydrogen evolution stability of platinum modified graphite electrode. Int J Hydrogen Energy 39:11355–11359. doi: 10.1016/j.ijhydene.2014.05.159 CrossRefGoogle Scholar
  4. 4.
    Solmaz R, Kardaş G (2011) Fabrication and characterization of NiCoZn–M (M: Ag, Pd and Pt) electrocatalysts as cathode materials for electrochemical hydrogen production. Int J Hydrogen Energy 36:12079–12087. doi: 10.1016/j.ijhydene.2011.06.101 CrossRefGoogle Scholar
  5. 5.
    Pletcher D, Li X (2011) Prospects for alkaline zero gap water electrolysers for hydrogen production. Int J Hydrogen Energy 36:15098–15104. doi: 10.1016/j.ijhydene.2011.08.080 CrossRefGoogle Scholar
  6. 6.
    McArthur MA, Jorge L, Coulombe S, Omanovic S (2014) Synthesis and characterization of 3D Ni nanoparticle/carbon nanotube cathodes for hydrogen evolution in alkaline electrolyte. J Power Sour 266:365–373. doi: 10.1016/j.jpowsour.2014.05.036 CrossRefGoogle Scholar
  7. 7.
    Rami A, Lasia A (1992) Kinetics of hydrogen evolution on Ni-Al alloy electrodes. J Appl Electrochem 22:376–382. doi: 10.1007/BF01092692 CrossRefGoogle Scholar
  8. 8.
    Suffredini HB, Cerne JL, Crnkovic FC, Machado SAS, Avaca LA (2000) Recent developments in electrode materials for water electrolysis. Int J Hydrogen Energy 25:415–423. doi: 10.1016/S0360-3199(99)00049-X CrossRefGoogle Scholar
  9. 9.
    Tang X, Xiao L, Yang C, Lu J, Zhuang L (2014) Noble fabrication of Ni-Mo cathode for alkaline water electrolysis and alkaline polymer electrolyte water electrolysis. Int J Hydrogen Energy 39:3055–3060. doi: 10.1016/j.ijhydene.2013.12.053 CrossRefGoogle Scholar
  10. 10.
    Raj IA, Vasu K (1990) Transition metal-based hydrogen electrodes in alkaline solution-electrocatalysis on nickel based binary alloy coatings. J Appl Electrochem 20:32–38. doi: 10.1007/BF01012468 CrossRefGoogle Scholar
  11. 11.
    Pletcher D, Li X, Wang S (2012) A comparison of cathodes for zero gap alkaline water electrolysers for hydrogen production. Int J Hydrogen Energy 37:7429–7435. doi: 10.1016/j.ijhydene.2012.02.013 CrossRefGoogle Scholar
  12. 12.
    Hu C-C, Weng C-Y (2000) Hydrogen evolving activity on nickel–molybdenum deposits using experimental strategies. J Appl Electrochem 30:499–506. doi: 10.1023/A:1003964728030 CrossRefGoogle Scholar
  13. 13.
    Donten M, Cesiulis H, Stojek Z (2005) Electrodeposition of amorphous/nanocrystalline and polycrystalline Ni–Mo alloys from pyrophosphate baths. Electrochim Acta 50:1405–1412. doi: 10.1016/j.electacta.2004.08.028 CrossRefGoogle Scholar
  14. 14.
    Chassaing E, Portail N, Levy AF, Wang G (2004) Characterisation of electrodeposited nanocrystalline Ni–Mo alloys. J Appl Electrochem 34:1085–1091. doi: 10.1007/s10800-004-2460-z CrossRefGoogle Scholar
  15. 15.
    Sanches LS, Domingues SH, Marino CEB, Mascaro LH (2004) Characterisation of electrochemically deposited Ni–Mo alloy coatings. Electrochem Commun 6:543–548. doi: 10.1016/j.elecom.2004.04.002 CrossRefGoogle Scholar
  16. 16.
    Crousier J, Eyraud M, Crousier JP, Roman JM (1992) Influence of substrate on the electrodeposition of nickel-molybdenum alloys. J Appl Electrochem 22:749–755. doi: 10.1007/BF01027505 CrossRefGoogle Scholar
  17. 17.
    Sanches LS, Marino CB, Mascaro LH (2007) Investigation of the codeposition of Fe and Mo from sulphate-citrate acid solutions. J Alloy Compd 439:342–345. doi: 10.1016/j.jallcom.2006.08.231 CrossRefGoogle Scholar
  18. 18.
    Marlot A, Kern P, Landolt D (2002) Pulse plating of Ni–Mo alloys from Ni–rich electrolytes. Electrochim Acta 48:29–36. doi: 10.1016/S0013-4686(02)00544-3 CrossRefGoogle Scholar
  19. 19.
    Jović BM, Jović VD, Maksimović VM, Pavlović MG (2008) Characterization of electrodeposited powders of the system Ni–Mo–O. Electrochim Acta 53:4796–4804. doi: 10.1016/j.electacta.2008.02.004 CrossRefGoogle Scholar
  20. 20.
    Han Q, Cui S, Pu N, Chen J, Liu K, Wei X (2010) A study on pulse plating amorphous Ni–Mo alloy coating used as HER cathode in alkaline medium. Int J Hydrogen Energy 35:5194–5201. doi: 10.1016/j.ijhydene.2010.03.093 CrossRefGoogle Scholar
  21. 21.
    Krstajic NV, Jovic VD, Lj Gajic-Krstaji, Jovic BM, Antozzi AL, Martelli GN (2008) Electrodeposition of Ni–Mo alloy coatings and their characterization as cathodes for hydrogen evolution in sodium hydroxide solution. Int J Hydrogen Energy 33:3676–3687. doi: 10.1016/j.ijhydene.2008.04.039 CrossRefGoogle Scholar
  22. 22.
    Aaboub O (2011) Hydrogen evolution activity of Ni–Mo coating electrodeposited under magnetic field control. Int J Hydrogen Energy 36:4702–4709. doi: 10.1016/j.ijhydene.2011.01.035 CrossRefGoogle Scholar
  23. 23.
    Krstajić NV, Lj Gajić-Krstajić, Lačnjevac U, Jović BM, Mora S, Jović VD (2011) Non-noble metal composite cathodes for hydrogen evolution. Part I: the Ni–MoOx coatings electrodeposited from Watt’s type bath containing MoO3 powder particles. Int J Hydrogen Energy 36:6441–6449. doi: 10.1016/j.ijhydene.2011.02.105 CrossRefGoogle Scholar
  24. 24.
    Krstajić NV, Lačnjevac U, Jović BM, Mora S, Jović VD (2011) Non-noble metal composite cathodes for hydrogen evolution. Part II: the Ni–MoO2 coatings electrodeposited from nickel chloride-ammonium chloride bath containing MoO2 powder particles. Int J Hydrogen Energy 36:6450–6461. doi: 10.1016/j.ijhydene.2011.02.106 CrossRefGoogle Scholar
  25. 25.
    Xia M, Lei T, Lv N, Li N (2014) Synthesis and electrocatalytic hydrogen evolution performance of Ni–Mo–Cu alloy coating electrode. Int J Hydrogen Energy 39:4797–4802. doi: 10.1016/j.ijhydene.2014.01.091 Google Scholar
  26. 26.
    Gennero de Chialvo MR, Chialvo AC (1998) Hydrogen evolution reaction on smooth Ni(1−x) + Mo(x) alloys (0 ≤ x ≤ 0.25). J Electroanal Chem 448:87–93. doi: 10.1016/S0022-0728(98)00011-4 CrossRefGoogle Scholar
  27. 27.
    Beltowska-Lehman E, Indyka P (2012) Kinetics of Ni–Mo electrodeposition from Ni-rich citrate baths. Thin Solid Films 520:2046–2051. doi: 10.1016/j.tsf.2011.10.024 CrossRefGoogle Scholar
  28. 28.
    Jaksic JM, Vojnovic MV, Krstajic NV (2000) Kinetic analysis of hydrogen evolution at Ni–Mo alloy electrodes. Electrochim Acta 45:4151–4158. doi: 10.1016/S0013-4686(00)00549-1 CrossRefGoogle Scholar
  29. 29.
    Kaninski MPM, Miulovic SM, Tasic GS, Maksic AD, Nikolic VM (2011) A study on the Co–W activated Ni electrodes for the hydrogen production from alkaline water electrolysis—energy saving. Int J Hydrogen Energy 36:5227–5235. doi: 10.1016/j.ijhydene.2011.02.046 CrossRefGoogle Scholar
  30. 30.
    Herraiz-Cardona I, Ortega E, Garcίa Antόn J, Pérez-Herranz V (2011) Assessment of the roughness factor effect and the intrinsic catalytic activity for hydrogen evolution reaction onNi-based electrodeposits. Int J Hydrogen Energy 36:9428–9438. doi: 10.1016/j.ijhydene.2011.05.047 CrossRefGoogle Scholar
  31. 31.
    Los P, Rami A, Lasia A (1993) Hydrogen evolution reaction on Ni-Al electrodes. J Appl Electrochem 23:135–140CrossRefGoogle Scholar
  32. 32.
    Highfield JG, Claude E, Oguro K (1999) Electrocatalytic synergism in Ni–Mo cathodes for hydrogen evolution in acid medium: a new model. Electrochim Acta 44:2805–2814. doi: 10.1016/S0013-4686(98)00403-4 CrossRefGoogle Scholar
  33. 33.
    Damian A, Omanovic S (2006) Ni and Ni–Mo hydrogen evolution electrocatalysts electrodeposited in a polyaniline matrix. J Power Sources 158:464–476. doi: 10.1016/j.jpowsour.2005.09.007 CrossRefGoogle Scholar
  34. 34.
    Navvaro-Flores E, Chong Z, Omanovic S (2005) Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium. J Mol Catal A 226:179–197. doi: 10.1016/j.molcata.2004.10.029 CrossRefGoogle Scholar
  35. 35.
    Jaksic MM (2000) Hypo–hyper–d–electronic interactive nature of synergism in catalysis and electrocatalysis for hydrogen reactions. Electrochim Acta 45:4085–4099. doi: 10.1016/S0360-3199(00)00120-8 CrossRefGoogle Scholar
  36. 36.
    Eliaz N, Gileadi E (2007) The mechanism of induced codeposition of Ni–W alloys. Electrochem Society 6:337–349Google Scholar
  37. 37.
    Metzler OY, Zhu L, Gileadi E (2003) The anomalous codeposition of tungsten in the presence of nickel. Electrochim Acta 48:2551–2562. doi: 10.1016/S0013-4686(03)00297-4 CrossRefGoogle Scholar
  38. 38.
    Eliaz N, Sridhara TM, Gileadi E (2005) Synthesis and characterization of nickel tungsten alloys by electrodeposition. Electrochim Acta 50:2893–2904. doi: 10.1016/j.electacta.2004.11.038 CrossRefGoogle Scholar
  39. 39.
    Solmaz R, Kardaş G (2007) Hydrogen evolution and corrosion performance of NiZn coatings. Energy Convers Manag 48:583–591. doi: 10.1016/j.enconman.2006.06.004 CrossRefGoogle Scholar
  40. 40.
    Conway BE, Jerkiewicz G (2000) Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the volcano curve for cathodic H2 evolution kinetics. Electrochim Acta 45:4075–4083. doi: 10.1016/S0013-4686(00)00523-5 CrossRefGoogle Scholar
  41. 41.
    Krstajić N, Popović M, Grgur B, Vojnović M, Šepa D (2001) On the kinetics of the hydrogen evolution reaction on nickel in alkaline solution Part I. The mechanism. J Electroanal Chem 512:16–26. doi: 10.1016/S0022-0728(01)00590-3 CrossRefGoogle Scholar
  42. 42.
    Hu W (2000) Electrocatalytic properties of new electrocatalysts for hydrogen evolution in alkaline water electrolysis. Int J Hydrogen Energy 25:111–118. doi: 10.1016/S0360-3199(99)00024-5 CrossRefGoogle Scholar
  43. 43.
    Metikos-Hukovic M, Jukic A (2000) Correlation of electronic structure and catalytic activity of Zr–Ni amorphous alloys for the hydrogen evolution reaction. Electrochim Acta 45:4159–4170. doi: 10.1016/S0013-4686(00)00550-8 CrossRefGoogle Scholar
  44. 44.
    Elumalai P, Vasan HN, Munichandraiah N, Shivashankar SA (2002) Kinetics of hydrogen evolution on submicron size Co, Ni, Pd and Co–Ni alloy powder electrodes by d.c. polarization and a.c. impedance studies. J Appl Electrochem 32:1005–1010. doi: 10.1023/A:1020935218149 CrossRefGoogle Scholar
  45. 45.
    Łosiewicz B, Budniok A, Rόwiński E, Łagiewka E, Lasia A (2004) The structure, morphology and electrochemical impedance study of the hydrogen evolution reaction on the modifed nickel electrodes. Int J Hydrogen Energy 29:145–157. doi: 10.1016/S0360-3199(03)00096-X CrossRefGoogle Scholar
  46. 46.
    Hitz C, Lasia A (2001) Experimental study and modeling of impedance of the her on porous Ni electrodes. J Electroanal Chem 500:213–222. doi: 10.1016/S0022-0728(00)00317-X CrossRefGoogle Scholar
  47. 47.
    Döner A, Solmaz R, Kardaş G (2011) Enhancement of hydrogen evolution at cobalt–zinc deposited graphite electrode in alkaline solution. Int J Hydrogen Energy 36:7391–7397. doi: 10.1016/j.ijhydene.2011.03.083 CrossRefGoogle Scholar
  48. 48.
    Solmaz R, Kardaş G (2009) Electrochemical deposition and characterization of NiFe coatings aselectrocatalytic materials for alkaline water electrolysis. Electrochim Acta 54:3726–3734. doi: 10.1016/j.electacta.2009.01.064 CrossRefGoogle Scholar
  49. 49.
    Birry L, Lasia A (2004) Studies of the hydrogen evolution reaction on Raney nickel–molybdenum electrodes. J Appl Electrochem 34:735–749CrossRefGoogle Scholar
  50. 50.
    Kubisztal J, Budniok A, Lasia A (2007) Study of the hydrogen evolution reaction on nickel-based composite coatings containing molybdenum powder. Int J Hydrogen Energy 32:1211–1218. doi: 10.1016/j.ijhydene.2006.11.020 CrossRefGoogle Scholar
  51. 51.
    Solmaz R, Döner A, Kardaş G (2008) Electrochemical deposition and characterization of NiCu coatings as cathode materials for hydrogen evolution reaction. Electrochem Commun 10:1909–1911. doi: 10.1016/j.elecom.2008.10.011 CrossRefGoogle Scholar
  52. 52.
    Kawashima A, Sakaki T, Habazaki H, Hashimoto K (1999) Ni–Mo–O alloy cathodes for hydrogen evolution in hot concentrated NaOH solution. Mater Sci Eng, A 267:246–253. doi: 10.1016/S0921-5093(99)00099-4 CrossRefGoogle Scholar
  53. 53.
    Niedbala J, Budniok A, Lagiewka E (2008) Hydrogen evolution on the polyethylene-modified Ni–Mo composite layers. Thin Sol Films 516:6191–6196. doi: 10.1016/j.tsf.2007.11.105 CrossRefGoogle Scholar
  54. 54.
    Özkan S, Hapçı G, Orhan G, Kazmanlı K (2013) Electrodeposited Ni/SiC nanocomposite coatings and evaluation of wear and corrosion properties. Surf Coat Technol 232:734–741. doi: 10.1016/j.surfcoat.2013.06.089 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Mert Manazoğlu
    • 1
  • Gökçe Hapçı
    • 1
  • Gökhan Orhan
    • 1
    Email author
  1. 1.Metallurgical and Materials Engineering Department, Faculty of EngineeringIstanbul UniversityIstanbulTurkey

Personalised recommendations