Skip to main content

Advertisement

Log in

Carbon-supported Pt-RuS2 nanocomposite as hydrogen oxidation reaction catalysts for fuel cells

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A carbon-supported Pt-RuS2 nanocomposite (Pt-RuS2/C) that contained extremely small amount of Pt compared with commercial Pt/C was prepared by the deposition of Pt nanoparticles (NPs) onto carbon-supported RuS2 NPs. This Pt-RuS2/C NP was demonstrated to be an electrocatalyst for hydrogen oxidation reaction catalyst for polymer electrolyte membrane fuel cells using membrane electrode assembly in a single-cell performance test and CO-stripping measurements. The results of structural analysis on prepared nanocomposite showed highly dispersed Pt (ca. 2.5 nm in diameter) and RuS2 (ca. 5.5 nm in diameter) NPs on carbon particles. Pt existed in an unalloyed phase in Pt-RuS2/C, and RuS2 NPs were in physical contact with Pt NPs. Although the amount of Pt in the Pt-RuS2/C NP was only 21.7 % of commercial Pt/C, the Pt-RuS2/C exhibited comparable single-cell performance to commercial Pt/C as an anode electrocatalyst, owing to the promoting effect of RuS2 on the reactivity of Pt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kim OH, Cho YH, Kang SH, Park HY, Kim M, Lim JW, Chung DY, Lee MJ, Choe H, Sung YE (2013) Ordered macroporous platinum electrode and enhanced mass transfer in fuel cells using inverse opal structure. Nat Commun 4:2473

    Google Scholar 

  2. Strmcnik D, Uchimura M, Wang C, Subbaraman R, Danilovic N, Vilet D, Paulikas AP, Stamenkovic V, Markovic N (2013) Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat Chem 5:300

    Article  CAS  Google Scholar 

  3. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem A 108:17886

    Article  CAS  Google Scholar 

  4. Park IS, Park KW, Choi JH, Park CR, Sung YE (2007) Electrocatalytic enhancement of methanol oxidation by graphite nanofibers with a high loading of PtRu alloy nanoparticles. Carbon 45:28

    Article  CAS  Google Scholar 

  5. Park IS, Lee KS, Jung DS, Park HY, Sung YE (2007) Electrocatalytic activity of carbon-supported Pt–Au nanoparticles for methanol electro-oxidation. Electrochim Acta 52:5599

    Article  CAS  Google Scholar 

  6. Park IS, Lee KS, Cho YH, Park HY, Sung YE (2008) Methanol electro-oxidation on carbon-supported and Pt-modified Au nanoparticles. Catal Today 132:127

    Article  CAS  Google Scholar 

  7. US Department of Energy. Technical Plan: Fuel Cells (2012). (http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel_cells.pdf)

  8. Yu H, Hou Z, Yi B, Lin Z (2002) Composite anode for CO tolerance proton exchange membrane fuel cells. J Power Sources 105:52

    Article  CAS  Google Scholar 

  9. Dumonteil C, Lacroix M, Geantet C, Jobic H, Breysse M (1999) Hydrogen activation and reactivity of ruthenium sulfide catalysts: influence of the dispersion. J Catal 187:464

    Article  CAS  Google Scholar 

  10. Kim OH, Cho YH, Chung DY, Kim MJ, Yoo JM, Park JE, Choe H, Sung YE (2015) Facile and gram-scale synthesis of metal-free catalysts: toward realistic applications for fuel cells. Sci Rep 5:8376

    Article  CAS  Google Scholar 

  11. Wieckowski A, Savinova ER, Vayenas CG (2003) Catalysis and electrocatalysis at nanoparticle surfaces. Marcel Dekker, New York

    Book  Google Scholar 

  12. Reeve RW, Christensen PA, Hamnett A, Haydock SA, Roy SC (1998) Methanol tolerant oxygen reduction catalysts based on transition metal sulfides. J Electrochem Soc 145:3463

    Article  CAS  Google Scholar 

  13. Reeve RW, Christensen PA, Dickinson AJ, Hamnett A, Scott K (2000) Methanol-tolerant oxygen reduction catalysts based on transition metal sulfides and their application to the study of methanol permeation. Electrochim Acta 45:4237

    Article  CAS  Google Scholar 

  14. Solorza-Feria O, Ellmer K, Giersig M, Alonso-Vante N (1994) Novel low-temperature synthesis of semiconducting transition metal chalcogenide electrocatalyst for multielectron charge transfer: molecular oxygen reduction. Electrochim Acta 39:1647

    Article  CAS  Google Scholar 

  15. Alonso-Vante N, Malakhov IV, Nikitenko SG, Savinova ER, Kochubey DI (2002) The structure analysis of the active centers of Ru-containing electrocatalysts for the oxygen reduction. An in situ EXAFS study. Electrochim Acta 47:3807

    Article  CAS  Google Scholar 

  16. Cao D, Wieckowski A, Inukai J, Alonso-Vante N (2006) Oxygen reduction reaction on ruthenium and rhodium nanoparticles modified with selenium and sulfur. J Electrochem Soc 153:A869

    Article  CAS  Google Scholar 

  17. Zehl G, Schmithals G, Hoell A, Haas S, Hartnig C, Dorbandt I, Bogdanoff P, Fiechter S (2007) On the structure of carbon-supported selenium-modified ruthenium nanoparticles as electrocatalysts for oxygen reduction in fuel cells. Angew Chem Int Ed 46:7311

    Article  CAS  Google Scholar 

  18. De Los Reyes JA (2007) Ruthenium sulfide supported on alumina as hydrotreating catalyst. App Catal A Gen 322:106

    Article  CAS  Google Scholar 

  19. Jobic H, Clugnet G, Lacroix M, Yuan S, Mirodatos C, Breysse M (1993) Identification of new hydrogen species adsorbed on ruthenium sulfide by neutron spectroscopy. J Am Chem Soc 115:3654

    Article  CAS  Google Scholar 

  20. Alonso-Vante N, Tributsch H, Solorza-Feria O (1995) Kinetics studies of oxygen reduction in acid medium on novel semiconducting transition metal chalcogenides. Electrochim Acta 40:567

    Article  CAS  Google Scholar 

  21. Dubau L, Coutanceau C, Garnier E, Leger JM, Lamy C (2003) Electrooxidation of methanol at platinum–ruthenium catalysts prepared from colloidal precursors: atomic composition and temperature effects. J Appl Electrochem 33:419

    Article  CAS  Google Scholar 

  22. Chen S, Kucernak A (2004) Electrocatalysis under conditions of high mass transport: investigation of hydrogen oxidation on single submicron Pt particles supported on carbon. J Phys Chem B 108:3984

    Article  CAS  Google Scholar 

  23. Lu K, Kuo YJ, Tatarchuk BJ (1989) Hydrogen adsorption and hydrogen-deuterium equilibration on sulfided ruthenium and bulk ruthenium sulfide catalysts. J Catal 116(2):373–382

    Article  CAS  Google Scholar 

  24. Breysse M, Furimsky E, Kasztelan S, Lacroix M, Perot Guy (2002) Hydrogen activation by transition metal sulfides. Catal Rev 44:651

    Article  CAS  Google Scholar 

  25. Markovic NM, Schmidt TJ, Grgur BN, Gasteiger HA, Behm RJ, Ross PN (1999) Effect of temperature on surface processes at the Pt (111)-liquid interface: hydrogen adsorption, oxide formation, and CO oxidation. J Phys Chem B 103:8568

    Article  CAS  Google Scholar 

  26. Liu P, Nørskov JK (2001) Kinetics of the anode processes in PEM fuel cells–the promoting effect of Ru in PtRu anodes. Fuel Cells 1:192

    Article  CAS  Google Scholar 

  27. Neurock M, Janik M, Wieckowski A (2009) A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt. Faraday Discuss 140:363

    Article  Google Scholar 

  28. Mitchell PC, Wolohan P, Thompsett D, Cooper SJ (1997) Experimental and theoretical studies of fuel cell catalysts: density functional theory calculations of H2 dissociation and CO chemisorption on fuel cell metal dimers. J Mol Catal A: Chem 119:223

    Article  CAS  Google Scholar 

  29. Christoffersen E, Liu P, Ruban A, Skriver HL, Nørskov JK (2001) Anode materials for low-temperature fuel cells: a density functional theory study. J Catal 199:123

    Article  CAS  Google Scholar 

  30. Gasteiger HA, Markovic NM, Ross PN Jr (1995) H2 and CO electrooxidation on well-characterized Pt, Ru, and Pt-Ru. 1. Rotating disk electrode studies of the pure gases including temperature effects. J Phys Chem 99:8290

    Article  CAS  Google Scholar 

  31. Grgur BN, Markovic NM, Ross PN (1998) Electrooxidation of H2, CO, and H2/CO mixtures on a well-characterized Pt70Mo30 bulk alloy electrode. Phys Chem 102:2494

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Y.-E. Sung acknowledges the Institute for Basic Science (IBS) in Korea. This work was supported by Project Code IBS-R006-G1 in Korea. Y.-H. Cho acknowledges financial support from the Basic Science Research Program (2013R1A1A2061636) through the National Research Foundation of Korea (NRF), which is funded by the Ministry of Education. And this work was supported by the NRF Grant funded by the Korean Government (MSIP) (No. 2012R1A1A1041991).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-Hun Cho or Yung-Eun Sung.

Additional information

In-Su Park and Ok-Hee Kim have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, IS., Kim, OH., Kim, J.W. et al. Carbon-supported Pt-RuS2 nanocomposite as hydrogen oxidation reaction catalysts for fuel cells. J Appl Electrochem 46, 77–83 (2016). https://doi.org/10.1007/s10800-015-0899-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0899-8

Keywords

Navigation