Journal of Applied Electrochemistry

, Volume 45, Issue 12, pp 1265–1276 | Cite as

Inkjet-printed interdigitated cells for photoelectrochemical oxidation of diluted aqueous pollutants

  • Petr Dzik
  • Michal Veselý
  • Martina Blašková
  • Marcela Králová
  • Michael Neumann-Spallart
Research Article
Part of the following topical collections:
  1. Solar Cells


Planar, interdigitated photoelectrochemical cells were made by inkjet printing. The electrode fingers had widths ranging from 200 to 1500 µm and were revealed by printing a positive protective polymer mask on fluorine-doped tin oxide-coated glass slides and subsequent etching. One finger family was overprinted by an ink-jettable sol–gel composition based on titanium propoxide which was then converted into TiO2 by annealing in air. An incident photon to current conversion efficiency of 0.19 was obtained at 360 nm for 200-nm-thick films. The influence of electrode geometry and titania thickness on the electrochemical properties of resulting cells is discussed in detail. Due to the interdigitated layout, photoelectrochemical response was not suffering from iR drop down to low electrolyte ionic strengths. The printed cells were used in photoelectrocatalytic degradation experiments of aqueous solutions of benzoic acid by broadband ultraviolet irradiation (UVA) and electric bias of 1 V and delivered considerable acceleration of the degradation process compared to the plain photocatalytic mode.


Interdigitated cell Advanced oxidation process Material printing Inkjet Electrochemistry Water treatment Photoelectrocatalysis 



The authors thank the Ministry of Education, Youth and Sports of the Czech Republic for support through projects CZ.1.07/2.3.00/30.0005 and LD14131.


  1. 1.
    van Grieken R, Marugan J, Sordo C, Pablos C (2009) Comparison of the photocatalytic disinfection of E. coli suspensions in slurry, wall and fixed-bed reactors. Catal Today 144(1–2):48–54. doi: 10.1016/j.cattod.2008.11.017 CrossRefGoogle Scholar
  2. 2.
    Tasbihi M, Ngah CR, Aziz N, Mansor A, Abdullah AZ, Teong LK, Mohamed AR (2007) Lifetime and regeneration studies of various supported TiO2 photocatalysts for the degradation of phenol under UV-C light in a batch reactor. Ind Eng Chem Res 46(26):9006–9014. doi: 10.1021/ie070284x CrossRefGoogle Scholar
  3. 3.
    Neumann-Spallart M (2007) Aspects of photocatalysis on semiconductors: photoelectrocatalysis. Chimia 61(12):806–809. doi: 10.2533/chimia.2007.806 CrossRefGoogle Scholar
  4. 4.
    Waldner G, Bruger A, Gaikwad NS, Neumann-Spallart M (2007) WO3 thin films for photoelectrochemical purification of water. Chemosphere 67(4):779–784. doi: 10.1016/j.chemosphere.2006.10.024 CrossRefGoogle Scholar
  5. 5.
    Fernandez-Ibanez P, Malato S, Enea O (1999) Photoelectrochemical reactors for the solar decontamination of water. Catal Today 54(2–3):329–339. doi: 10.1016/s0920-5861(99)00194-7 CrossRefGoogle Scholar
  6. 6.
    Butterfield IM, Christensen PA, Hamnett A, Shaw KE, Walker GM, Walker SA, Howarth CR (1997) Applied studies on immobilized titanium dioxide films as catalysts for the photoelectrochemical detoxification of water. J Appl Electrochem 27(4):385–395. doi: 10.1023/a:1018453402332 CrossRefGoogle Scholar
  7. 7.
    Dikici T, Erol M, Toparli M, Celik E (2014) Characterization and photocatalytic properties of nanoporous titanium dioxide layer fabricated on pure titanium substrates by the anodic oxidation process. Ceram Int 40(1):1587–1591. doi: 10.1016/j.ceramint.2013.07.046 CrossRefGoogle Scholar
  8. 8.
    Momeni MM, Ghayeb Y, Ghonchegi Z (2015) Visible light activity of sulfur-doped TiO2 nanostructure photoelectrodes prepared by single-step electrochemical anodizing process. J Solid State Electrochem 19(5):1359–1366. doi: 10.1007/s10008-015-2758-2 CrossRefGoogle Scholar
  9. 9.
    Momeni MM, Ghayeb Y, Ghonchegi Z (2015) Fabrication and characterization of copper doped TiO2 nanotube arrays by in situ electrochemical method as efficient visible-light photocatalyst. Ceram Int 41(7):8735–8741. doi: 10.1016/j.ceramint.2015.03.094 CrossRefGoogle Scholar
  10. 10.
    Momeni MM, Ghayeb Y (2015) Fabrication, characterization and photoelectrochemical behavior of Fe–TiO2 nanotubes composite photoanodes for solar water splitting. J Electroanal Chem 751:43–48. doi: 10.1016/j.jelechem.2015.05.035 CrossRefGoogle Scholar
  11. 11.
    Momeni M, Ghayeb Y (2015) Synthesis and characterization of iron-doped titania nanohoneycomb and nanoporous semiconductors by electrochemical anodizing method as good visible light active photocatalysts. J Mater Sci 26(7):5509–5517. doi: 10.1007/s10854-015-3108-y Google Scholar
  12. 12.
    Momeni M, Ghayeb Y, Davarzadeh M (2015) Electrochemical construction of different titania–tungsten trioxide nanotubular composite and their photocatalytic activity for pollutant degradation: a recyclable photocatalysts. J Mater Sci 26(3):1560–1567. doi: 10.1007/s10854-014-2575-x Google Scholar
  13. 13.
    Momeni MM, Ghayeb Y (2015) Photoelectrochemical water splitting on chromium-doped titanium dioxide nanotube photoanodes prepared by single-step anodizing. J Alloys Compd 637:393–400. doi: 10.1016/j.jallcom.2015.02.137 CrossRefGoogle Scholar
  14. 14.
    Macwan DP, Dave PN, Chaturvedi S (2011) A review on nano-TiO2 sol-gel type syntheses and its applications. J Mater Sci 46(11):3669–3686. doi: 10.1007/s10853-011-5378-y CrossRefGoogle Scholar
  15. 15.
    Bettini LG, Dozzi MV, Della Foglia F, Chiarello GL, Selli E, Lenardi C, Piseri P, Milani P (2015) Mixed-phase nanocrystalline TiO2 photocatalysts produced by flame spray pyrolysis. Appl Catal B 178:226–232. doi: 10.1016/j.apcatb.2014.09.013 CrossRefGoogle Scholar
  16. 16.
    Neumann-Spallart M, Shinde SS, Mahadik M, Bhosale CH (2013) Photoelectrochemical degradation of selected aromatic molecules. Electrochim Acta 111:830–836. doi: 10.1016/j.electacta.2013.08.080 CrossRefGoogle Scholar
  17. 17.
    Neumann-Spallart M (2011) Photoelectrochemistry on a planar, interdigitated electrochemical cell. Electrochim Acta 56(24):8752–8757. doi: 10.1016/j.electacta.2011.07.089 CrossRefGoogle Scholar
  18. 18.
    Krebs FC (2009) Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol Energy Mater Sol Cells 93(4):394–412. doi: 10.1016/j.solmat.2008.10.004 CrossRefGoogle Scholar
  19. 19.
    Alonso-Lomillo MA, Dominguez-Renedo O, Arcos-Martinez MJ (2010) Screen-printed biosensors in microbiology; a review. Talanta 82(5):1629–1636. doi: 10.1016/j.talanta.2010.08.033 CrossRefGoogle Scholar
  20. 20.
    Li M, Li Y-T, Li D-W, Long Y-T (2012) Recent developments and applications of screen-printed electrodes in environmental assays—a review. Anal Chim Acta 734:31–44. doi: 10.1016/j.aca.2012.05.018 CrossRefGoogle Scholar
  21. 21.
    Riegel S, Mutter F, Lauermann T, Terheiden B, Hahn G (2012) Review on screen printed metallization on p-type silicon. Proc Third Metallization Workshop Metallization Cryst Silicon Sol Cells 21:14–23. doi: 10.1016/j.egypro.2012.05.003 Google Scholar
  22. 22.
    Martin GD, Hoath SD, Hutchings IM (2006) Inkjet printing—the physics of manipulating liquid jets and drops. In: Conference on engineering in physics—synergy for success, London, England. doi: 10.1088/1742-6596/105/1/012001
  23. 23.
    Calvert P (2001) Inkjet printing for materials and devices. Chem Mater 13(10):3299–3305. doi: 10.1021/cm0101632 CrossRefGoogle Scholar
  24. 24.
    Sirringhaus H, Shimoda T (2003) Inkjet printing of functional materials. MRS Bull 28(11):802–806. doi: 10.1557/mrs2003.228 CrossRefGoogle Scholar
  25. 25.
    Tekin E, Smith PJ, Schubert US (2012) Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter 4(4):703–713. doi: 10.1039/B711984D CrossRefGoogle Scholar
  26. 26.
    Dzik P, Veselý M, Králová M, Neumann-Spallart M (2015) Ink-jet printed planar electrochemical cells. Appl Catal B 178:186–191. doi: 10.1016/j.apcatb.2014.09.030 CrossRefGoogle Scholar
  27. 27.
    Tang W, Feng LR, Zhao JQ, Cui QY, Chen SJ, Guo XJ (2014) Inkjet printed fine silver electrodes for all-solution-processed low-voltage organic thin film transistors. J Mater Chem C 2(11):1995–2000. doi: 10.1039/c3tc32134g CrossRefGoogle Scholar
  28. 28.
    Wang MW, Pang DC, Tseng YE, Tseng CC (2014) The study of light guide plate fabricated by inkjet printing technique. J Taiwan Inst Chem Eng 45(3):1049–1055. doi: 10.1016/j.jtice.2013.08.021 CrossRefGoogle Scholar
  29. 29.
    Tarapata G, Marzecki M (2013) Methodology and technological aspects of the flexible substrate preparation for Ink-jet Printing technology. In: Romaniuk RS (ed) Photonics applications in astronomy, communications, industry, and high-energy physics experiments, vol 8903. Proceedings of SPIE. doi:89032m10.1117/12.2041890Google Scholar
  30. 30.
    Kwon JT, Eom SH, Moon BS, Shin JK, Kim KS, Lee SH, Lee YS (2012) Studies on printing inks containing poly 2-methoxy-5-(2-ethylhexyl-oxyl)-1,4-phenylenevinylene as an emissive material for the fabrication of polymer light-emitting diodes by inkjet printing. Bull Korean Chem Soc 33(2):464–468. doi: 10.5012/bkcs.2012.33.2.464 CrossRefGoogle Scholar
  31. 31.
    Dzik P, Morozová M, Klusoň P, Veselý M (2012) Photocatalytic and self-cleaning properties of titania coatings prepared by inkjet direct patterning of a reverse micelles sol-gel composition. J Adv Oxid Technol 15(1):89–97Google Scholar
  32. 32.
    Swartz JD, Deravi LF, Wright DW (2010) Bottom-up synthesis of biologically active multilayer films using inkjet-printed templates. Adv Funct Mater 20(9):1488–1492. doi: 10.1002/adfm.200902169 CrossRefGoogle Scholar
  33. 33.
    Sowade E, Hammerschmidt J, Blaudeck T, Baumann RR, Polster D, Baumgartel T, Graaf H, von Borczyskowski C, Wagner R, Cichos F, Sist (2009) Inkjet printing of polymer microspheres. In: Nip 25: digital fabrication 2009, Technical program and proceedingsGoogle Scholar
  34. 34.
    Deravi LF, Swartz JD, Wright DW (2008) Piezoelectric inkjet printing of biomimetic surfaces for enzyme encapsulation. In: Nip24/digital fabrication 2008: 24th international conference on digital printing technologies, technical program and proceedingsGoogle Scholar
  35. 35.
    Černá M, Veselý M, Dzik P (2011) Physical and chemical properties of titanium dioxide printed layers. Catal Today 161(1):97–104. doi: 10.1016/j.cattod.2010.11.019 CrossRefGoogle Scholar
  36. 36.
    Cernigoj U, Kete M, Stangar UL (2010) Development of a fluorescence-based method for evaluation of self-cleaning properties of photocatalytic layers. Catal Today 151(1–2):46–52. doi: 10.1016/j.cattod.2010.03.043 CrossRefGoogle Scholar
  37. 37.
    Ishibashi K, Fujishima A, Watanabe T, Hashimoto K (2000) Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique. Electrochem Commun 2(3):207–210. doi: 10.1016/s1388-2481(00)00006-0 CrossRefGoogle Scholar
  38. 38.
    Chan AHC, Chan CK, Barford JP, Porter JF (2003) Solar photocatalytic thin film cascade reactor for treatment of benzoic acid containing wastewater. Water Res 37(5):1125–1135. doi: 10.1016/s0043-1354(02)00465-7 CrossRefGoogle Scholar
  39. 39.
    Karim MM, Lee HS, Kim YS, Bae HS, Lee SH (2006) Analysis of salicylic acid based on the fluorescence enhancement of the As(III)-salicylic acid system. Anal Chim Acta 576(1):136–139. doi: 10.1016/j.aca.2006.02.004 CrossRefGoogle Scholar
  40. 40.
    Pozdnyakov IP, Pigliucci A, Tkachenko N, Plyusnin VF, Vauthey E, Lemmetyinen H (2009) The photophysics of salicylic acid derivatives in aqueous solution. J Phys Org Chem 22(5):449–454. doi: 10.1002/poc.1489 CrossRefGoogle Scholar
  41. 41.
    Morozova M, Kluson P, Dzik P, Vesely M, Baudys M, Krysa J, Solcova O (2013) The influence of various deposition techniques on the photoelectrochemical properties of the titanium dioxide thin film. J Sol Gel Sci Technol 65(3):452–458. doi: 10.1007/s10971-012-2957-6 CrossRefGoogle Scholar
  42. 42.
    Kralova M, Dzik P, Vesely M, Cihlar J (2013) Preparation and characterization of doped titanium dioxide printed layers. Catal Today 230:188–196CrossRefGoogle Scholar
  43. 43.
    Schmiedova V, Dzik P, Vesely M, Zmeskal O, Morozova M, Kluson P (2015) Optical properties of titania coatings prepared by inkjet direct patterning of a reverse micelles sol-gel composition. Molecules 20(8):14552CrossRefGoogle Scholar
  44. 44.
    Olthuis W, Streekstra W, Bergveld P (1995) Theoretical and experimental-determination of cell constants of planar-interdigitated electrolyte conductivity sensors. Sens Actuators B 24(1–3):252–256. doi: 10.1016/0925-4005(95)85053-8 CrossRefGoogle Scholar
  45. 45.
    Herrmann JM (1999) Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal Today 53(1):115–129. doi: 10.1016/s0920-5861(99)00107-8 CrossRefGoogle Scholar
  46. 46.
    Lawless D, Serpone N, Meisel D (1991) Role of OH· radicals and trapped holes in photocatalysis—a pulse-radiolysis study. J Phys Chem 95(13):5166–5170. doi: 10.1021/j100166a047 CrossRefGoogle Scholar
  47. 47.
    Tantis I, Bousiakou L, Frontistis Z, Mantzavinos D, Konstantinou I, Antonopoulou M, Karikas G-A, Lianos P (2015) Photocatalytic and photoelectrocatalytic degradation of the drug omeprazole on nanocrystalline titania films in alkaline media: effect of applied electrical bias on degradation and transformation products. J Hazard Mater 294:57–63. doi: 10.1016/j.jhazmat.2015.03.042 CrossRefGoogle Scholar
  48. 48.
    Tantis I, Stathatos E, Mantzavinos D, Lianos P (2015) Photoelectrocatalytic degradation of potential water pollutants in the presence of NaCl using nanocrystalline titania films. J Chem Technol Biotechnol 90(7):1338–1344. doi: 10.1002/jctb.4549 CrossRefGoogle Scholar
  49. 49.
    Tantis I, Bousiakou L, Karikas G-A, Lianos P (2015) Photocatalytic and photoelectrocatalytic degradation of the antibacterial agent ciprofloxacin. Photochem Photobiol Sci 14(3):603–607. doi: 10.1039/c4pp00377b CrossRefGoogle Scholar
  50. 50.
    Olya ME, Pirkarami A (2013) Cost-effective photoelectrocatalytic treatment of dyes in a batch reactor equipped with solar cells. Sep Purif Technol 118:557–566. doi: 10.1016/j.seppur.2013.07.038 CrossRefGoogle Scholar
  51. 51.
    Mumjitha M, Raj V (2015) Electrochemical synthesis, structural features and photoelectrocatalytic activity of TiO2-SiO2 ceramic coatings on dye degradation. Mater Sci Eng B 198:62–73. doi: 10.1016/j.mseb.2015.03.020 CrossRefGoogle Scholar
  52. 52.
    Li G, Liu X, An J, Yang H, Zhang S, Wong P-K, An T, Zhao H (2015) Photocatalytic and photoelectrocatalytic degradation and mineralization of small biological compounds amino acids at TiO2 photoanodes. Catal Today 245:46–53. doi: 10.1016/j.cattod.2014.05.040 CrossRefGoogle Scholar
  53. 53.
    Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions, 2nd edn. National Association of Corrosion Engineers, HoustonGoogle Scholar
  54. 54.
    Shinde PS, Patil PS, Bhosale PN, Bruger A, Nauer G, Neumann-Spallart M, Bhosale CH (2009) UVA and solar light assisted photoelectrocatalytic degradation of AO7 dye in water using spray deposited TiO2 thin films. Appl Catal B 89(1–2):288–294. doi: 10.1016/j.apcatb.2009.02.025 CrossRefGoogle Scholar
  55. 55.
    Burgues-Ceballos I, Stella M, Lacharmoise P, Martinez-Ferrero E (2014) Towards industrialization of polymer solar cells: material processing for upscaling. J Mater Chem A 2(42):17711–17722. doi: 10.1039/c4ta03780d CrossRefGoogle Scholar
  56. 56.
    Toivola M, Peltola T, Miettunen K, Halme J, Lund P (2010) Thin film nano solar cells-from device optimization to upscaling. J Nanosci Nanotechnol 10(2):1078–1084. doi: 10.1166/jnn.2010.1872 CrossRefGoogle Scholar
  57. 57.
    M-s Hwang, B-y Jeong, Moon J, Chun S-K, Kim J (2011) Inkjet-printing of indium tin oxide (ITO) films for transparent conducting electrodes. Mater Sci Eng B 176(14):1128–1131. doi: 10.1016/j.mseb.2011.05.053 CrossRefGoogle Scholar
  58. 58.
    Song JW, Yoon YH, Kim J, Han CS, Choi BS, Kim JH, Sid (2007) Direct fabrication and patterning of transparent conductive carbon nanotube film using inkjet printing. In: SID International Symposium, Digest of Technical Papers, SID; Soc. Information Display: Long Beach, 2007; pp 1613–1616. doi:  10.1889/1.2785629
  59. 59.
    Jeong J-A, Kim H-K (2010) Characteristics of inkjet-printed nano indium tin oxide particles for transparent conducting electrodes. Curr Appl Phys 10(4):E105–E108. doi: 10.1016/j.cap.2010.06.009 CrossRefGoogle Scholar
  60. 60.
    Černá M, Veselý M, Dzik P, Guillard C, Puzenat E, Lepičová M (2013) Fabrication, characterization and photocatalytic activity of TiO2 layers prepared by inkjet printing of stabilized nanocrystalline suspensions. Appl Catal B 138–139:84–94. doi: 10.1016/j.apcatb.2013.02.035 Google Scholar
  61. 61.
    Uchida H, Otsubo A, Itatani K, Koda S (2005) Low-temperature deposition of polycrystalline titanium oxide thin film on Si substrate using supercritical carbon dioxide fluid. Jpn J Appl Phys Part 1 44(4A):1901–1906. doi: 10.1143/jjap.44.1901 CrossRefGoogle Scholar
  62. 62.
    Bazargan MH, Byranvand MM, Kharat AN (2012) Preparation and characterization of low temperature sintering nanocrystalline TiO2 prepared via the sol-gel method using titanium(IV) butoxide applicable to flexible dye sensitized solar cells. Int J Mater Res 103(3):347–351. doi: 10.3139/146.110644 CrossRefGoogle Scholar
  63. 63.
    Dzik P, Veselý M, Kete M, Pavlica E, Štangar UL, Neumann-Spallart M (2015) Properties and application perspective of hybrid titania-silica patterns fabricated by inkjet printing. ACS Appl Mater Interfaces 7(30):16177–16190. doi: 10.1021/acsami.5b03494 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Petr Dzik
    • 1
    • 2
  • Michal Veselý
    • 1
    • 2
  • Martina Blašková
    • 1
  • Marcela Králová
    • 2
  • Michael Neumann-Spallart
    • 3
  1. 1.Faculty of ChemistryBrno University of TechnologyBrnoCzech Republic
  2. 2.Central European Institute of TechnologyBrno University of TechnologyBrnoCzech Republic
  3. 3.Groupe d’Étude de la Matière Condensée (GEMaC), CNRS/Université de VersaillesVersailles CedexFrance

Personalised recommendations