Advertisement

Journal of Applied Electrochemistry

, Volume 46, Issue 1, pp 47–58 | Cite as

Efficiency enhancement in plasmonic dye-sensitized solar cells with TiO2 photoanodes incorporating gold and silver nanoparticles

  • M. A. K. L. Dissanayake
  • J. M. K. W. Kumari
  • G. K. R. Senadeera
  • C. A. Thotawatthage
Research Article
Part of the following topical collections:
  1. Solar Cells

Abstract

Plasmonic dye-sensitized solar cells (DSSCs) were fabricated using TiO2 photoanodes incorporating gold nanoparticles (AuNPs) with 15–20-nm size and silver nanoparticles (AgNPs) with 40–60-nm size. These were characterized by UV–Vis spectroscopy, JV characteristic, IPCE spectroscopy, EIS analysis and dark I–V measurements. Under the illumination of 100 mW cm−2 (AM 1.5), the efficiency of the reference DSSC without Au and Ag NPs in TiO2 was 5.12 %, while the efficiencies of plasmonic DSSCs with TiO2:AuNP and TiO2:AgNP were 6.23 and 6.51 %, respectively, representing an efficiency enhancement by 21.6 % for AuNPs and 27 % for AgNPs. The increased efficiencies of the two plasmonic DSSCs appear to be due to the increased short-circuit photocurrent density by enhanced light harvesting caused by the localized surface plasmon resonance effect. The IPCE spectra of the two plasmonic DSSCs suggest the narrowing of the energy band gap of TiO2 due to the presence of Au and Ag nanoparticles.

Keywords

Dye-sensitized solar cells Efficiency enhancement TiO2 photoanodes Gold and silver nanoparticles Surface plasmon resonance effect 

Notes

Acknowledgments

Authors wish to thank Dr. LP Teo and the Centre for Ionics, University of Malyaya (CIUM) for carrying out the XRD measurements.

References

  1. 1.
    O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740CrossRefGoogle Scholar
  2. 2.
    Hara K, Arakawa H (2003) Dye-sensitized solar cells. In: Tachibana Y, Hara K, Sayama K, Arakawa H (eds) Handbook of photovoltaic science and engineering. John Wiley & Sons Ltd, Chichester, pp 664–670Google Scholar
  3. 3.
    Koumura N, Wang Z, Mori S, Miyashita M, Suzuki E, Hara K (2006) Alkyl-functionalized organic dyes for efficient molecular photovoltaics. J Am Chem Soc 128:14256–14257CrossRefGoogle Scholar
  4. 4.
    Grätzel M (2005) Solar energy conversion by Dye-sensitized photovoltaic cells. Inorg Chem 44:6841–6851CrossRefGoogle Scholar
  5. 5.
    Dissanayake MAKL, Thotawatthage CA, Senadeera GKR, Bandara TMWJ, Jayasundera WJMJSR, Mellander B-E (2012) Efficiency enhancement by mixed cation effect in dye-sensitized solar cells with PAN based gel polymer electrolyte. J Photochem Photobiol A 246:29–35CrossRefGoogle Scholar
  6. 6.
    Wang H, Zhang X, Gong F, Zhou G, Wang Z (2012) Novel ester-functionalized solid-state electrolyte for highly efficient all-solid-state dye-sensitized solar cells. Adv Mater 24:121–124CrossRefGoogle Scholar
  7. 7.
    Dissanayake MAKL, Rupasinghe WNS, Seneviratne VA, Thotawatthage CA, Senadeera GKR (2014) Optimization of iodide ion conductivity and nano filler effect for efficiency enhancement in polyethylene oxide (PEO) based dye sensitized solar cells. Electrochim Acta 145:319–326CrossRefGoogle Scholar
  8. 8.
    Nazeeruddin M, Kay A, Rodicie I, Humphry-Baker R, Müller E, Liska P (1993) Conversion of light to electricity bycis-XzBis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(11) charge-transfer sensitizers (X = C1-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes. J Am Chem Soc 115:6382–6390CrossRefGoogle Scholar
  9. 9.
    Dissanayake MAKL, Divarathne HKDMNR, Thotawatthage CA, Dissanayake CB, Senadeera GKR, Bandara BMR (2014) Dye-sensitized solar cells based on electrospun polyacrylonitrile (PAN) nanofibre membrane gel electrolyte. Electrochim Acta 130:76–81CrossRefGoogle Scholar
  10. 10.
    Chandrasekharan N, Kamat P (2000) Improving the photoelectrochemical performance of nanostructured TiO2 films by adsorption of gold nanoparticles. J Phys Chem B 104:10851–10857CrossRefGoogle Scholar
  11. 11.
    Standridge S, Schatz G, Hupp J (2009) Distance dependence of plasmon enhanced photocurrent in dye-sensitized solar cells. J Am Chem Soc 131:8407–8409CrossRefGoogle Scholar
  12. 12.
    Ding K, Zhu J, McGehee M, Cai W, Moon S, Cai N et al (2011) Plasmonic dye-sensitized solar cells. Adv Energy Mater 1:52–57CrossRefGoogle Scholar
  13. 13.
    Zhang DZ, Wang M, Brolo A, Shen J, Li X, Huang S (2013) Enhanced performance of dye-sensitized solar cells using gold nanoparticles modified fluorine tin oxide electrodes. J Phys D Appl Phys 46:024005–024013CrossRefGoogle Scholar
  14. 14.
    Meen T, Tsai J, Chao S, Lin Y, Wu T, Chang T (2013) Surface plasma resonant effect of gold nanoparticles on the phototelectrodes of dye-sensitized solar cells Nanoscale Research Lett 8:450–456Google Scholar
  15. 15.
    Jeong N, Prasittichai C, Hupp J (2011) Photocurrent enhancement by surface plasmon resonance of Silver nanoparticles in highly porous dye-sensitized solar cells. Langmuir 27(23):14609–14614CrossRefGoogle Scholar
  16. 16.
    Ihara M, Tanaka K, Sakaki K, Honma I, Yamada K (1997) Enhancement of the -absorption coefficient of cis-(NCS)2 Bis(2,2‘-bipyridyl-4,4‘-dicarboxylate)ruthenium(II) dye in dye-sensitized solar cells by a silver Island film. J Phys Chem B 101:5153–5157CrossRefGoogle Scholar
  17. 17.
    Jeong NC, Prasittichai C, Hupp J (2011) Photocurrent enhancement by surface plasmon resonance of silver nanoparticles in highly porous dye-sensitized solar cells. Langmuir 27:14609–14614CrossRefGoogle Scholar
  18. 18.
    Ding IK, Zhu J, Cai W, Moon SJ, Cai N, Wang P, Zakeeruddin S, Gratzel M, Brongersma MML, Cui Y, mcgehee MD (2011) Plasmonic dye-sensitized solar cells. Adv Energy Mater 1:52–57CrossRefGoogle Scholar
  19. 19.
    Hou W, Pavaskar P, Liu Z, Theiss J, Aykol M, Cronin SB (2011) plasmon resonant enhancement of dye-sensitized solar cells. Energy Environ Sci 4:4650–4655CrossRefGoogle Scholar
  20. 20.
    Chang S, Li Q, Xiao X, Wong KY, Chen T (2012) Enhancement of low energy sunlight harvesting in dye-sensitized solar cells using plasmonic gold nanorods. Energy Environ Sci 5:9444–9448CrossRefGoogle Scholar
  21. 21.
    Zhang X, Liu J, Li S, Tan X, Yu M, Du J (2013) Bioinspired Synthesis of Ag@TiO2 plasmonic nanocomposites to enhance the light harvesting of dye-sensitized solar cells. RSC Adv 3:18587–18595CrossRefGoogle Scholar
  22. 22.
    Chang H, Chen C, Kao M, Hsiao H (2014) Effect of core-shell Ag@TiO2 volume ratio on characteristics of TiO2-based DSSCs. J Nanomater 2014:264108–264116Google Scholar
  23. 23.
    Brown M, Suteewong T, Kumar R, D’Innocenzo V, Petrozzo A, Lee M (2011) Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles. Nano Lett 11:438–445CrossRefGoogle Scholar
  24. 24.
    Sheehan S, Noh H, Brudvig G, Cao H, Schmuttenmaer C (2013) Plasmonic enhancement of dye-sensitized solar cells using core − shell − shell nanostructures. J Phys Chem C117:927–934Google Scholar
  25. 25.
    Tabrizi A, Ayhan F, Ayhan H (2009) Gold nanoparticle synthesis and characterisation. Hacettepe J Biol Chem 37(3):217–226Google Scholar
  26. 26.
    Huang H, Yang X (2003) Chitosan mediated assembly of gold nanoparticles multilayer. Coll Surf A 226:77–86CrossRefGoogle Scholar
  27. 27.
    Chang H, Chen D (2009) Fabrication and photocatalytic activities in visible and UV light regions of Ag@TiO2 and NiAg@TiO2 nanoparticles. Nanotechnology 20:105704–105714CrossRefGoogle Scholar
  28. 28.
    Ratyakshi I, Chauhan R (2009) Colloidal synthesis of Silver Nanoparticles. Asian J Chem 21(10):113–116Google Scholar
  29. 29.
    Njoki PN, Lim IIMS, Mott D, Park HY, Khan B, Mishra S, Sujakumar R, Luo J, Zhong CJ (2007) Size correlation of optical and spectroscopic properties for gold nanoparticles. J Phys Chem C 111:14664–14669CrossRefGoogle Scholar
  30. 30.
    Eustis S, El-Sayed NA (2006) Why Gold Nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209–217CrossRefGoogle Scholar
  31. 31.
    Hagglund C, Zach M, Kasemo B (2008) Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons. Appl Phys Lett 92:013113–013113CrossRefGoogle Scholar
  32. 32.
    Chandrasekharan N, Kamat P (2000) Improving the Photoelectrochemical Performance of Nanostructured TiO 2 Films by Adsorption of Gold Nanoparticles. The J Phys Chem B 104(46):10851–10857CrossRefGoogle Scholar
  33. 33.
    Rand B, Peumans P, Forrest S (2004) Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. J Appl Phys 96:7519–7526CrossRefGoogle Scholar
  34. 34.
    Li J, Chen X, Ai N, Hao J, Chen Q, Strauf S (2011) Silver nanoparticle doped TiO2 nanofiber dye sensitized solar cells. Chem Phys Lett 514:141–145CrossRefGoogle Scholar
  35. 35.
    Nakato Y, Shioji M, Tsubomura H (1982) Photoeffects on the potentials of thin metal films on a n-TiO2 crystal wafer The mechanism of semiconductor photocatalysts. Chem Phys Lett 90:453–456CrossRefGoogle Scholar
  36. 36.
    Subramanian V, Wolf E, Kamat PV (2001) Semiconductor − metal composite nanostructures. to what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films. J Phys Chem B 105(46):11439–11446CrossRefGoogle Scholar
  37. 37.
    Pan M (2013) Enhanced efficiency of dye-sensitized solar cell by high surface area anatase-TiO2-modified P25 paste. J Nanomater 2013:760685–760691Google Scholar
  38. 38.
    Park NG, Lagemaat JVD, Frank AJ (2000) Comparison of dye-sensitized rutile and anatase-based TiO2 solar cells. J Phys Chem B 104:8989–8994CrossRefGoogle Scholar
  39. 39.
    Tang Xiao, Wang Yuxun, Cao Guozhong (2013) Effect of the adsorbed concentration of dye on charge recombination in dye-sensitized solar cells. J Electroanal Chem 694:6–11CrossRefGoogle Scholar
  40. 40.
    Sathiya Priya AR, Subramania A, Jung Young-Sam, Kim Kang-Jin (2008) High- performance quasi-solid-state dye-sensitized solar cell based on an electrospun PVdF-HFP membrane electrolyte. Langmuir 24(17):9816–9819CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • M. A. K. L. Dissanayake
    • 1
    • 2
  • J. M. K. W. Kumari
    • 1
    • 2
  • G. K. R. Senadeera
    • 1
    • 2
    • 3
  • C. A. Thotawatthage
    • 1
    • 2
  1. 1.National Institute of Fundamental StudiesKandySri Lanka
  2. 2.Postgraduate Institute of ScienceUniversity of PeradeniyaPeradeniyaSri Lanka
  3. 3.Department of PhysicsThe Open University of Sri LankaNugegodaSri Lanka

Personalised recommendations