Journal of Applied Electrochemistry

, Volume 45, Issue 7, pp 647–656 | Cite as

Investigation of Ni-based alloy/CGO electro-catalysts as protective layer for a solid oxide fuel cell anode fed with ethanol

  • M. Lo Faro
  • R. M. Reis
  • G. G. A. Saglietti
  • S. C. Zignani
  • S. Trocino
  • P. Frontera
  • P. L. Antonucci
  • E. A. Ticianelli
  • A. S. Aricò
Research Article


Ni-based alloys were prepared by using the oxalate method and subsequent in-situ reduction. The crystallographic phase and microstructure of the catalysts were investigated. These bimetallic alloys were mixed with gadolinium-doped ceria in order to obtain a composite material with mixed electronic-ionic conductivity. Catalytic and electrocatalytic properties of the composite materials for the conversion of ethanol were investigated. Electrochemical tests were carried out by utilizing the Ni-based alloy/CGO cermet as a barrier layer in a conventional anode-supported solid oxide fuel cell (SOFC). A comparative study between the modified cells and a conventional anode-supported SOFC without the protective layer was made. The aim was to efficiently convert the fuel directly into electricity or syngas (H2 and CO) just before the conventional anode support. In accordance with the ex-situ catalytic tests, the SOFC anode modified with Ni–Co/CGO showed superior performance towards the direct utilization of dry ethanol than the bare anode and that modified with Ni–Cu/CGO. A peak power of 550 mW cm−2 was achieved with the dry ethanol-fed Ni–Co/CGO pre-layer modified-cell at 800 °C. A total low frequency resistance of <0.5 Ω cm2 at 0.8 V of cell voltage was recorded in the presence of ethanol directly fed to the SOFC.


Solid oxide fuel cells Bioethanol Ni-based alloy Cermet Protective layer Sustainable energy 



The present work was in part carried out in the framework of the Research Program promoted by the Brazialian “Conselho Nacional de Desenvolvimento Científico e Tecnológico“entitled “Ciência sem Fronteiras” processo no 402180/2012-7. S. C. Zignani wants to thank CNPq for post-doctoral fellowship awarded under the reference number (CNPq Proc. 238319/2012-1). R. M. Reis wants to thank FAPESP agency for post-doctoral fellowship (FAPESP Proc. 2014/04100-2). The authors acknowledge the Italian Ministry of Research and Education for the financial support of the BIOITSOFC project within the program “PROGRAMMI DI RICERCA SCIENTIFICA DI RILEVANTE INTERESSE NAZIONALE- PRIN PROGRAMMA DI RICERCA - Anno 2010–2011 - prot. 2010KHLKFC”.

Supplementary material

10800_2015_849_MOESM1_ESM.doc (136 kb)
Supplementary material 1 (doc 136 kb)


  1. 1.
    Xuan J, Leung MKH, Leung DYC, Ni M (2009) A review of biomass-derived fuel processors for fuel cell systems. Renew Sustain Energy Rev 13(6–7):1301–1313. doi: 10.1016/j.rser.2008.09.027 CrossRefGoogle Scholar
  2. 2.
    Vasileiadis S, Ziaka-Vasileiadou Z (2004) Biomass reforming process for integrated solid oxide-fuel cell power generation. Chem Eng Sci 59(22–23):4853–4859. doi: 10.1016/j.ces.2004.07.071 CrossRefGoogle Scholar
  3. 3.
    Lo Faro M, Minutoli M, Monforte G, Antonucci V, Aricò AS (2011) Glycerol oxidation in solid oxide fuel cells based on a Ni-perovskite electrocatalyst. Biomass Bioenergy 35(3):1075–1084. doi: 10.1016/j.biombioe.2010.11.018 CrossRefGoogle Scholar
  4. 4.
    Lo Faro M, La Rosa D, Antonucci V, Aricò AS (2009) Intermediate temperature solid oxide fuel cell electrolytes. J Indian Inst Sci 89(4):363–381. doi: 10.1002/chin.201137207 Google Scholar
  5. 5.
    Cowin PI, Petit CTG, Lan R, Irvine JTS, Tao S (2011) Recent progress in the development of anode materials for solid oxide fuel cells. Adv Energy Mater 1(3):314–332. doi: 10.1002/aenm.201100108 CrossRefGoogle Scholar
  6. 6.
    Barbucci A, Viviani M, Carpanese P, Vladikova D, Stoynov Z (2006) Impedance analysis of oxygen reduction in SOFC composite electrodes. Electrochim Acta 51(8–9):1641–1650. doi: 10.1016/j.electacta.2005.02.106 CrossRefGoogle Scholar
  7. 7.
    Steele BCH, Bae J-M (1998) Properties of La0.6Sr0.4Co0.2Fe0.8O3−x (LSCF) double layer cathodes on gadolinium-doped cerium oxide (CGO) electrolytes: II. Role of oxygen exchange and diffusion. Solid State Ion 106(3–4):255–261. doi: 10.1016/S0167-2738(97)00430-X CrossRefGoogle Scholar
  8. 8.
    Lo Faro M, Vita A, Pino L, Aricò AS (2013) Performance evaluation of a solid oxide fuel cell coupled to an external biogas tri-reforming process. Fuel Process Technol 115:238–245. doi: 10.1016/j.fuproc.2013.06.008 CrossRefGoogle Scholar
  9. 9.
    Schlapbach L, Zuttel A (2001) Hydrogen-storage materials for mobile applications. Nature 414(6861):353–358. doi: 10.1038/35104634 CrossRefGoogle Scholar
  10. 10.
    Zignani SC, Baglio V, Linares JJ, Monforte G, Gonzalez ER, Aricò AS (2012) Performance and selectivity of PtxSn/C electro-catalysts for ethanol oxidation prepared by reduction with different formic acid concentrations. Electrochim Acta 70:255–265. doi: 10.1016/j.electacta.2012.03.055 CrossRefGoogle Scholar
  11. 11.
    Aricò AS, Cretì P, Antonucci P, Antonucci V (1998) Comparison of ethanol and methanol oxidation in a liquid-feed solid polymer electrolyte fuel cell at high temperature. Electrochem Solid-State Lett 1(2):66–68. doi: 10.1149/1.1390638 CrossRefGoogle Scholar
  12. 12.
    de Carvalho Macedo I (1998) Greenhouse gas emissions and energy balances in bio-ethanol production and utilization in Brazil (1996). Biomass Bioenergy 14(1):77–81. doi: 10.1016/S0961-9534(97)00038-X CrossRefGoogle Scholar
  13. 13.
    Hernández L, Kafarov V (2009) Use of bioethanol for sustainable electrical energy production. Int J Hydrog Energy 34(16):7041–7050. doi: 10.1016/j.ijhydene.2008.07.089 CrossRefGoogle Scholar
  14. 14.
    Tsiakaras P, Demin A (2001) Thermodynamic analysis of a solid oxide fuel cell system fuelled by ethanol. J Power Sour 102(1–2):210–217. doi: 10.1016/S0378-7753(01)00803-5 CrossRefGoogle Scholar
  15. 15.
    Cimenti M, Hill JM (2009) Thermodynamic analysis of solid oxide fuel cells operated with methanol and ethanol under direct utilization, steam reforming, dry reforming or partial oxidation conditions. J Power Sour 186(2):377–384. doi: 10.1016/j.jpowsour.2008.10.043 CrossRefGoogle Scholar
  16. 16.
    Saunders GJ, Preece J, Kendall K (2004) Formulating liquid hydrocarbon fuels for SOFCs. J Power Sour 131(1–2):23–26. doi: 10.1016/j.jpowsour.2004.01.040 CrossRefGoogle Scholar
  17. 17.
    Murray EP, Tsai T, Barnett SA (1999) A direct-methane fuel cell with a ceria-based anode. Nature 400(6745):649–651. doi: 10.1038/23220 CrossRefGoogle Scholar
  18. 18.
    Tippawan P, Arpornwichanop A (2014) Energy and exergy analysis of an ethanol reforming process for solid oxide fuel cell applications. Bioresour Technol 157:231–239. doi: 10.1016/j.biortech.2014.01.113 CrossRefGoogle Scholar
  19. 19.
    La Rosa D, Sin A, Lo Faro M, Monforte G, Antonucci V, Aricò AS (2009) Mitigation of carbon deposits formation in intermediate temperature solid oxide fuel cells fed with dry methane by anode doping with barium. J Power Sour 193(1):160–164. doi: 10.1016/j.jpowsour.2009.01.096 CrossRefGoogle Scholar
  20. 20.
    La Rosa D, Lo Faro M, Monforte G, Antonucci V, Aricò AS (2009) Comparison of the electrochemical properties of intermediate temperature solid oxide fuel cells based on protonic and anionic electrolytes. J Appl Electrochem 39(4):477–483. doi: 10.1007/s10800-008-9668-2 CrossRefGoogle Scholar
  21. 21.
    Sin A, Kopnin E, Dubitsky Y, Zaopo A, Aricò AS, La Rosa D, Gullo LR, Antonucci V (2007) Performance and life-time behaviour of NiCu–CGO anodes for the direct electro-oxidation of methane in IT-SOFCs. J Power Sour 164(1):300–305. doi: 10.1016/j.jpowsour.2006.10.078 CrossRefGoogle Scholar
  22. 22.
    Lo Faro M, La Rosa D, Nicotera I, Antonucci V, Aricò AS (2009) Electrochemical behaviour of propane-fed solid oxide fuel cells based on low Ni content anode catalysts. Electrochim Acta 54(22):5280–5285. doi: 10.1016/j.electacta.2009.03.077 CrossRefGoogle Scholar
  23. 23.
    Sin A, Kopnin E, Dubitsky Y, Zaopo A, Aricò AS, Gullo LR, La Rosa D, Antonucci V (2006) Influence of operating conditions on the direct electrochemical oxidation of methane on cermet based anodes. Fuel Cells 6(2):137–140. doi: 10.1002/fuce.200500107 CrossRefGoogle Scholar
  24. 24.
    Lo Faro M, Frontera P, Antonucci P, Aricò AS (2015) Ni–Cu based catalysts prepared by two different methods and their catalytic activity toward the ATR of methane. Chem Eng Res Des 93:269–277. doi: 10.1016/j.cherd.2014.05.014 CrossRefGoogle Scholar
  25. 25.
    Lo Faro M, Reis R, Saglietti G, Sato A, Ticianelli E, Zignani S, Aricò AS (2014) Ni–Cu/CGO composite electrocatalyst as protective layer for a solid oxide fuel cell anode fed with ethanol. ChemElectroChem. doi: 10.1002/celc.201402017 Google Scholar
  26. 26.
    Montinaro D, Sglavo V, Bertoldi M, Zandonella T, Aricò AS, Lo Faro M, Antonucci V (2006) Tape casting fabrication and co-sintering of solid oxide “half cells” with a cathode–electrolyte porous interface. Solid State Ion 177(19):2093–2097. doi: 10.1016/j.ssi.2006.01.016 CrossRefGoogle Scholar
  27. 27.
    Lo Faro M, La Rosa D, Frontera P, Antonucci P, Antonucci V, Aricò AS (2010) Propane-fed solid oxide fuel cell based on a composite Ni-La-CGO anode catalyst. Catal Lett 136(1–2):57–64. doi: 10.1007/s10562-010-0295-2 CrossRefGoogle Scholar
  28. 28.
    Lo Faro M, Modafferi V, Frontera P, Antonucci P, Aricò AS (2013) Catalytic behavior of Ni-modified perovskite and doped ceria composite catalyst for the conversion of odorized propane to syngas. Fuel Process Technol 113:28–33. doi: 10.1016/j.fuproc.2013.03.010 CrossRefGoogle Scholar
  29. 29.
    Lo Faro M, Antonucci V, Antonucci P, Aricò AS (2012) Fuel flexibility: a key challenge for SOFC technology. Fuel 102:554–559. doi: 10.1016/j.fuel.2012.07.031 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • M. Lo Faro
    • 1
  • R. M. Reis
    • 2
  • G. G. A. Saglietti
    • 2
  • S. C. Zignani
    • 1
  • S. Trocino
    • 1
  • P. Frontera
    • 3
  • P. L. Antonucci
    • 3
  • E. A. Ticianelli
    • 2
  • A. S. Aricò
    • 1
  1. 1.National Research Council - Institute of Advanced Energy Technologies (CNR-ITAE)MessinaItaly
  2. 2.USP-IQSCSão CarlosBrazil
  3. 3.University “Mediterranea” of Reggio CalabriaReggio CalabriaItaly

Personalised recommendations