Advertisement

Journal of Applied Electrochemistry

, Volume 45, Issue 6, pp 557–566 | Cite as

Visible light-driven photoelectrochemical water splitting on ZnO–TiO2 heterogeneous nanotube photoanodes

  • Mohamad Mohsen Momeni
  • Yousef Ghayeb
Research Article
Part of the following topical collections:
  1. Solar Cells

Abstract

TiO2 nanotube arrays (TiO2NTs) with an inner average pore diameter of 80–110 nm and a length of 40 μm were grown on titanium foils by electrochemical anodization in ammonium fluoride–water–ethylene glycol solution. ZnO was grafted on the TiO2 nanotube arrays (ZnO/TiO2NTs) by a chemical bath deposition technique in combination with a pyrolysis process. ZnO/TiO2NTs composite supported on titanium substrate was used as the photoanode for photocatalytic water splitting. Photoelectrochemical characterization shows that grafted ZnO on TiO2NTs efficiently enhanced the photocatalytic water-splitting performance of highly ordered TiO2NT. Such photoanode benefits from the capability of high specific surface and the direct conduction path through the aligned nanotubes. Moreover, the heterojunction at the ZnO/TiO2 interface favors charge separation and reduced the probability of charge recombination. This inexpensive photoanodes prepared free of noble metals, showed enhanced high photocurrent density with good stability, and is a highly promising photoanodes for visible light photocatalytic hydrogen production.

Keywords

Nanotubes ZnO TiO2 Water splitting Photoelectrochemical property Chemical bath deposition 

Notes

Acknowledgments

The author would like to acknowledge the financial support of Iranian Nanotechnology Society and Isfahan University of Technology (IUT) Research Council.

References

  1. 1.
    Huang YC, Chang SY, Lin CF, Tseng WJ (2011) J Mater Chem 21:14056–14061CrossRefGoogle Scholar
  2. 2.
    He H, Xiao P, Zhang Y, Jia Y, Yang Y, Qiao Z (2012) J Alloys Compd 522:63–68CrossRefGoogle Scholar
  3. 3.
    Momeni MM, Hosseini MG (2014) J Mater Sci: Mater Electron 25:5027–5034Google Scholar
  4. 4.
    Zhang QH, Fan GW, Gao L (2007) Appl Catal B 76:168–173CrossRefGoogle Scholar
  5. 5.
    Momeni MM, Ghayeb Y, Davarzadeh M (2015) J Electroanal Chem 739:149–155CrossRefGoogle Scholar
  6. 6.
    Xie YL, Li ZX, Xu ZG, Zhang HL (2011) Electrochem Commun 13:788–791CrossRefGoogle Scholar
  7. 7.
    Hosseini MG, Momeni MM, Faraji M (2011) Electroanalysis 23:1654–1662CrossRefGoogle Scholar
  8. 8.
    Barreca D, Comini E, Ferrucci AP, Gasparotto A, Maccato C, Maragno C, Sberveglieri G, Tondello E (2007) Chem Mater 19:5642–5649CrossRefGoogle Scholar
  9. 9.
    Hosseini MG, Momeni MM (2012) Appl Catal A 427:35–42CrossRefGoogle Scholar
  10. 10.
    Yang HY, Yu SF, Lau SP, Zhang X, Sun DD, Jun G (2009) Small 5:2260–2264CrossRefGoogle Scholar
  11. 11.
    Zhang Z, Yuan Y, Liang L, Cheng Y, Shi G, Jin L (2008) J Hazard Mater 158:517–522CrossRefGoogle Scholar
  12. 12.
    Vomiero A, Concina I, Natile MM, Comini E, Faglia G, Ferroni M, Kholmanov I, Sberveglieri G (2009) Appl Phys Lett 95:193104CrossRefGoogle Scholar
  13. 13.
    Lu X, Huang F, Mou X, Wang Y, Xu F (2010) Adv Mater 22:3719–3722CrossRefGoogle Scholar
  14. 14.
    Xiao FX (2012) ACS Appl Mater Interfaces 4:7055–7063CrossRefGoogle Scholar
  15. 15.
    Hoffmann MR, Marin ST, Choi W, Bahnemannt DW (1995) Chem Rev 95:69–96CrossRefGoogle Scholar
  16. 16.
    Zhang H, Zong RL, Zhu YF (2009) J Phys Chem C 113:4605–4611CrossRefGoogle Scholar
  17. 17.
    Wang HH, Baek S, Lee J, Lim S (2009) Chem Eng J 146:355–361CrossRefGoogle Scholar
  18. 18.
    Mohapatra SK, Banerjee S, Misra M (2008) Nanotechnology 19:315601–315607CrossRefGoogle Scholar
  19. 19.
    Wang G, Yang X, Qian F, Zhang JZ, Li Y (2010) Nano Lett 10:1088–1092CrossRefGoogle Scholar
  20. 20.
    Han J, Liu Z, Guo K, Wang B, Zhang X, Hong T (2015) Appl Catal B 163:179–188CrossRefGoogle Scholar
  21. 21.
    Liu Z, Guo K, Han J, Li Y, Cui T, Wang B, Ya J, Zhou C (2014) Small 10:3153–3161CrossRefGoogle Scholar
  22. 22.
    Hernández S, Cauda V, Chiodoni A, Dallorto S, Sacco A, Hidalgo D, Celasco E, Pirri CF (2014) ACS Appl Mater Interfaces 6:12153–12167CrossRefGoogle Scholar
  23. 23.
    Cheng C, Amini A, Zhu C, Xu Z, Song H, Wang N (2014) Sci Rep 4:4181–4185Google Scholar
  24. 24.
    Garino N, Lamberti A, Gazia R, Chiodoni A, Gerbaldi C (2014) J Alloy Comp 615:S530–S537CrossRefGoogle Scholar
  25. 25.
    Rakkesh RA, Balakumar S (2013) J Nanosci Nanotechnol 13:370–376CrossRefGoogle Scholar
  26. 26.
    Yu HD, Zhang ZP, Han MY, Hao XT, Zhu FR (2005) J Am Chem Soc 127:2378–2379CrossRefGoogle Scholar
  27. 27.
    Wang LS, Xiao MW, Huang XJ, Wu YD (2009) J Hazard Mater 161:49–54CrossRefGoogle Scholar
  28. 28.
    Liao DL, Badour CA, Liao BQ (2008) J Photochem Photobiol A Chem 194:11–19CrossRefGoogle Scholar
  29. 29.
    Liao MH, Hsu CH, Chen DH (2006) J Solid State Chem 179:2020–2026CrossRefGoogle Scholar
  30. 30.
    King DM, Liang X, Zhou Y, Carney CS, Hakim LF, Li P, Weimer AW (2008) Powder Technol 183:356–363CrossRefGoogle Scholar
  31. 31.
    Bahadur NM, Furusawa T, Sato M, Kuruyama F, Suzuki N (2010) Mater Res Bull 45:1383–1388CrossRefGoogle Scholar
  32. 32.
    Pozan GS, Kambur A (2014) Chemosphere 105:152–159CrossRefGoogle Scholar
  33. 33.
    Lee KM, Lee ES, Yoo B, Shin DH (2013) Electrochim Acta 109:181–186CrossRefGoogle Scholar
  34. 34.
    Liu R, Yang WD, Qiang LS, Liu HY (2012) J Power Sour 220:153–159CrossRefGoogle Scholar
  35. 35.
    Xiao FX, Hung SF, Tao HB, Miao J, Yang HB, Liu B (2014) Nanoscale 6:14950–14961CrossRefGoogle Scholar
  36. 36.
    Almeida LC, Zanoni MVB (2014) J Braz Chem Soc 25:579–588Google Scholar
  37. 37.
    Momeni MM, Ghayeb Y, Davarzadeh M (2015) J Mater Sci: Mater Electron 26:1560–1567Google Scholar
  38. 38.
    Yang SG, Quan X, Li XY, Liu YZ, Chen S, Chen GH (2004) Phys Chem Chem Phys 6:659–664CrossRefGoogle Scholar
  39. 39.
    Lei Y, Zhao G, Liu M, Zhang Z, Tong X, Cao T (2009) J Phys Chem C 113:19067–19076CrossRefGoogle Scholar
  40. 40.
    Fu HB, Xu TG, Zhu SB, Zhu YF (2008) Environ Sci Technol 42:8064–8069CrossRefGoogle Scholar
  41. 41.
    Zhang LW, Cheng HY, Zong RL, Zhu YF (2009) J Phys Chem C 113:2368–2374CrossRefGoogle Scholar
  42. 42.
    Wang HC, Liu P, Wang SM, Han W, Wang XX, Fu XZ (2007) J Mol Catal A 273:21–25CrossRefGoogle Scholar
  43. 43.
    Stroyuk AL, Shvalagin VV, Kuchmii SY (2005) J Photochem Photobiol, A 173:185–194CrossRefGoogle Scholar
  44. 44.
    Comparelli R, Fanizza E, Curri ML, Cozzi PD, Mascolo G, Agostiano A (2005) Appl Catal B 60:1–11CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of ChemistryIsfahan University of TechnologyIsfahanIran

Personalised recommendations