Journal of Applied Electrochemistry

, Volume 45, Issue 7, pp 799–808 | Cite as

Irradiation-assisted electrochemical processes for the removal of persistent organic pollutants from wastewater

  • María J. Martín de Vidales
  • Cristina Sáez
  • José F. Pérez
  • Salvador Cotillas
  • Javier Llanos
  • Pablo Cañizares
  • Manuel A. Rodrigo
Research Article


This work focused on the removal of persistent organic pollutants (POPs) from wastewater using irradiation-assisted electrochemical technologies, i.e. sonoelectrolysis, photoelectrolysis and sono-photoelectrolysis. Single-irradiation processes (sonolysis and photolysis) and electrochemical oxidation using conductive diamond anodes (current density of 30 mA cm−2) were also evaluated for comparison. Three POPs with different molecular structures (sulfamethoxazole, metoprolol and caffeine, initial concentration of 100 mg dm−3) were studied to evaluate the robustness of the selected technologies and the oxidation mechanisms involved in each case. Results show that the single application of the irradiation technologies led to the removal of only a small amount of POPs and no mineralisation, with the nature of the pollutant showing a marked effect; the opposite was observed for the single application of conductive diamond electrochemical oxidation (CDEO), which is a highly robust and efficient technology for the degradation of all types of POPs. Sonoelectrolysis, photoelectrolysis and sono-photoelectrolysis processes (ultrasound conditions: 200 W, ultraviolet conditions: 254 nm, 4 W) may show synergistic, antagonistic or nil effects with respect to a single electrochemical oxidation event, depending on the nature of the treated molecule. The differences observed may be related to the different chemical nature of the organic species studied, indicating an important role of mediated oxidation processes, which may be enhanced with ultrasounds and ultraviolet radiation techniques.


Electrochemical oxidation Sonoelectrolysis Photoelectrolysis Sulfamethoxazole Metoprolol Caffeine 



The authors acknowledge funding support from the Spanish Government (Project CTM2013-45612-R). The FPU scholarship awarded to María Jose Martín de Vidales is also gratefully acknowledged.


  1. 1.
    Esplugas S, Bila DM, Krause LGT, Dezotti M (2007) Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. J Hazard Mater 149(3):631–642CrossRefGoogle Scholar
  2. 2.
    Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32(11):3245–3260CrossRefGoogle Scholar
  3. 3.
    Brillas E, Boye B, Sirés I, Garrido JA, Rodríguez RM, Arias C, Cabot PL, Comninellis C (2004) Electrochemical destruction of chlorophenoxy herbicides by anodic oxidation and electro-Fenton using a boron-doped diamond electrode. Electrochim Acta 49(25):4487–4496CrossRefGoogle Scholar
  4. 4.
    Brillas E, Garcia-Segura S, Skoumal M, Arias C (2010) Electrochemical incineration of diclofenac in neutral aqueous medium by anodic oxidation using Pt and boron-doped diamond anodes. Chemosphere 79(6):605–612CrossRefGoogle Scholar
  5. 5.
    Abdessamad N, Akrout H, Hamdaoui G, Elghniji K, Ksibi M, Bousselmi L (2013) Evaluation of the efficiency of monopolar and bipolar BDD electrodes for electrochemical oxidation of anthraquinone textile synthetic effluent for reuse. Chemosphere 93(7):1309–1316CrossRefGoogle Scholar
  6. 6.
    Daskalaki VM, Marakas H, Mantzavinos D, Katsaounis A, Gikas P (2013) Use of seawater for the boron-doped diamond electrochemical treatment of diluted vinasse wastewater. Water Sci Technol 68(11):2344–2350CrossRefGoogle Scholar
  7. 7.
    Steter JR, Rocha RS, Dionísio D, Lanza MRV, Motheo AJ (2014) Electrochemical oxidation route of methyl paraben on a boron-doped diamond anode. Electrochim Acta 117:127–133CrossRefGoogle Scholar
  8. 8.
    Cavalcanti EB, Garcia-Segura S, Centellas F, Brillas E (2013) Electrochemical incineration of omeprazole in neutral aqueous medium using a platinum or boron-doped diamond anode: degradation kinetics and oxidation products. Water Res 47(5):1803–1815CrossRefGoogle Scholar
  9. 9.
    Polcaro AM, Mascia M, Palmas S, Vacca A (2004) Electrochemical degradation of diuron and dichloroaniline at BDD electrode. Electrochim Acta 49(4):649–656CrossRefGoogle Scholar
  10. 10.
    Boye B, Brillas E, Marselli B, Michaud PA, Comninellis C, Farnia G, Sandonà G (2006) Electrochemical incineration of chloromethylphenoxy herbicides in acid medium by anodic oxidation with boron-doped diamond electrode. Electrochim Acta 51(14):2872–2880CrossRefGoogle Scholar
  11. 11.
    Wang J, Li X (2012) Electrochemical treatment of wastewater containing chlorophenols using boron-doped diamond film electrodes. Adv Mater Res 356–360:1418–1422Google Scholar
  12. 12.
    Lorimer JP, Mason TJ, Plattes M, Phull SS, Iniesta J, Walton DJ (2004) Sonovoltammetric studies on copper in buffered alkaline solution. Ultrason Sonochem 11(3–4):223–226CrossRefGoogle Scholar
  13. 13.
    Flannigan DJ, Suslick KS (2005) Plasma formation and temperature measurement during single-bubble cavitation. Nature 434(7029):52–55CrossRefGoogle Scholar
  14. 14.
    Osugi ME, Umbuzeiro GA, Anderson MA, Zanoni MVB (2005) Degradation of metallophtalocyanine dye by combined processes of electrochemistry and photoelectrochemistry. Electrochim Acta 50(25-26 SPEC. ISS):5261–5269CrossRefGoogle Scholar
  15. 15.
    Pinhedo L, Pelegrini R, Bertazzoli R, Motheo AJ (2005) Photoelectrochemical degradation of humic acid on a (TiO2) 0.7(RuO2)0.3 dimensionally stable anode. Appl Catal B 57(2):75–81CrossRefGoogle Scholar
  16. 16.
    Catanho M, Malpass GRP, Motheo AJ (2006) Photoelectrochemical treatment of the dye reactive red 198 using DSA® electrodes. Appl Catal B 62(3–4):193–200CrossRefGoogle Scholar
  17. 17.
    Li G, Qu J, Zhang X, Ge J (2006) Electrochemically assisted photocatalytic degradation of acid orange 7 with β-PbO2 electrodes modified by TiO2. Water Res 40(2):213–220CrossRefGoogle Scholar
  18. 18.
    Socha A, Sochocka E, Podsiadły R, Sokołowska J (2006) Electrochemical and photoelectrochemical degradation of direct dyes. Color Technol 122(4):207–212CrossRefGoogle Scholar
  19. 19.
    Socha A, Sochocka E, Podsiadły R, Sokołowska J (2007) Electrochemical and photoelectrochemical treatment of C.I. Acid Violet 1. Dyes Pigments 73(3):390–393CrossRefGoogle Scholar
  20. 20.
    Sánchez-Carretero A, Rodrigo MA, Cañizares P, Sáez C (2010) Electrochemical synthesis of ferrate in presence of ultrasound using boron doped diamond anodes. Electrochem Commun 12(5):644–646CrossRefGoogle Scholar
  21. 21.
    de Freitas AM, Sirtori C, Peralta-Zamora P (2011) Photoelectrocatalytic degradation of camphor on TiO2/RuO2 electrodes. Environ Chem Lett 9(1):97–102CrossRefGoogle Scholar
  22. 22.
    Sánchez-Carretero A, Sáez C, Cañizares P, Cotillas S, Rodrigo MA (2011) Improvements in the electrochemical production of ferrates with conductive diamond anodes using goethite as raw material and ultrasound. Ind Eng Chem Res 50(11):7073–7076CrossRefGoogle Scholar
  23. 23.
    Rooze J, Rebrov EV, Schouten JC, Keurentjes JTF (2013) Dissolved gas and ultrasonic cavitation: a review. Ultrason Sonochem 20(1):1–11CrossRefGoogle Scholar
  24. 24.
    Polar JA (2007) The fate of pharmaceuticals after wastewater treatment. Fla Water Res J 59:26–31Google Scholar
  25. 25.
    Cañizares P, Paz R, Lobato J, Sáez C, Rodrigo MA (2006) Electrochemical treatment of the effluent of a fine chemical manufacturing plant. J Hazard Mater 138(1):173–181CrossRefGoogle Scholar
  26. 26.
    Indermuhle C, Martín de Vidales MJ, Sáez C, Robles J, Cañizares P, García-Reyes JF, Molina-Díaz A, Comninellis C, Rodrigo MA (2013) Degradation of caffeine by conductive diamond electrochemical oxidation. Chemosphere 93(9):1720–1725CrossRefGoogle Scholar
  27. 27.
    Martín de Vidales MJ, Sáez C, Cañizares P, Rodrigo MA (2013) Removal of triclosan by conductive-diamond electrolysis and sonoelectrolysis. J Chem Technol Biotechnol 88(5):823–828CrossRefGoogle Scholar
  28. 28.
    Vidales MJMD, Barba S, Sáez C, Cañizares P, Rodrigo MA (2014) Coupling ultraviolet light and ultrasound irradiation with conductive-diamond electrochemical oxidation for the removal of progesterone. Electrochim Acta 140:27–32CrossRefGoogle Scholar
  29. 29.
    Souza FL, Sáez C, Cañizares P, Motheo AJ, Rodrigo MA (2013) Coupling photo and sono technologies to improve efficiencies in conductive diamond electrochemical oxidation. Appl Catal B 144(1):121–128Google Scholar
  30. 30.
    Pelegrini R, Peralta-Zamora P, De Andrade AR, Reyes J, Durán N (1999) Electrochemically assisted photocatalytic degradation of reactive dyes. Appl Catal B 22(2):83–90CrossRefGoogle Scholar
  31. 31.
    Serrano K, Michaud PA, Comninellis C, Savall A (2002) Electrochemical preparation of peroxodisulfuric acid using boron doped diamond thin film electrodes. Electrochim Acta 48(4):431–436CrossRefGoogle Scholar
  32. 32.
    Wang J, Farrell J (2004) Electrochemical inactivation of triclosan with boron doped diamond film electrodes. Environ Sci Technol 38(19):5232–5237CrossRefGoogle Scholar
  33. 33.
    Polcaro AM, Vacca A, Mascia M, Ferrara F (2008) Product and by-product formation in electrolysis of dilute chloride solutions. J Appl Electrochem 38(7):979–984CrossRefGoogle Scholar
  34. 34.
    Murata M, Ivandini TA, Shibata M, Nomura S, Fujishima A, Einaga Y (2008) Electrochemical detection of free chlorine at highly boron-doped diamond electrodes. J Electroanal Chem 612(1):29–36CrossRefGoogle Scholar
  35. 35.
    Bergmann MEH, Rollin J, Iourtchouk T (2009) The occurrence of perchlorate during drinking water electrolysis using BDD anodes. Electrochim Acta 54(7):2102–2107CrossRefGoogle Scholar
  36. 36.
    Sánchez A, Llanos J, Sáez C, Cañizares P, Rodrigo MA (2013) On the applications of peroxodiphosphate produced by BDD-electrolyses. Chem Eng J 233:8–13CrossRefGoogle Scholar
  37. 37.
    Cañizares P, Lobato J, Paz R, Rodrigo MA, Sáez C (2005) Electrochemical oxidation of phenolic wastes with boron-doped diamond anodes. Water Res 39(12):2687–2703CrossRefGoogle Scholar
  38. 38.
    Coñizares P, García-Gómez J, Fernández de Marcos I, Rodrigo MA, Lobato J (2006) Measurement of mass-transfer coefficients by an electrochemical technique. J Chem Educ 83(8):1204–1207CrossRefGoogle Scholar
  39. 39.
    Martín de Vidales MJ, Robles-Molina J, Domínguez-Romero JC, Cañizares P, Sáez C, Molina-Díaz A, Rodrigo MA (2012) Removal of sulfamethoxazole from waters and wastewaters by conductive-diamond electrochemical oxidation. J Chem Technol Biotechnol 87(10):1441–1449CrossRefGoogle Scholar
  40. 40.
    Tsitonaki A, Petri B, Crimi M, Mosbk H, Siegrist RL, Bjerg PL (2010) In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review. Crit Rev Environ Sci Technol 40(1):55–91CrossRefGoogle Scholar
  41. 41.
    Thomberg T, Nerut J, Jäger R, Möller P, Lust K, Lust E (2005) The kinetics of electroreduction of peroxodisulfate ions on single crystal cadmium and bismuth electrodes. J Electroanal Chem 582(1–2):130–143CrossRefGoogle Scholar
  42. 42.
    Marselli B, Garcia-Gomez J, Michaud PA, Rodrigo MA, Comninellis C (2003) Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. J Electrochem Soc 150(3):D79–D83CrossRefGoogle Scholar
  43. 43.
    Souza FL, Aquino JM, Miwa DW, Rodrigo MA, Motheo AJ (2014) Photo-assisted electrochemical degradation of the dimethyl phthalate ester on DSA® electrode. J Environ Chem Eng 2(2):811–818CrossRefGoogle Scholar
  44. 44.
    Martín de Vidales MJ, Sáez C, Cañizares P, Rodrigo MA (2012) Electrolysis of progesterone with conductive-diamond electrodes. J Chem Technol Biotechnol 87(8):1173–1178CrossRefGoogle Scholar
  45. 45.
    Martín de Vidales MJ, Sáez C, Cañizares P, Rodrigo MA (2012) Metoprolol abatement from wastewaters by electrochemical oxidation with boron doped diamond anodes. J Chem Technol Biotechnol 87(2):225–231CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • María J. Martín de Vidales
    • 1
  • Cristina Sáez
    • 1
  • José F. Pérez
    • 1
  • Salvador Cotillas
    • 1
  • Javier Llanos
    • 1
  • Pablo Cañizares
    • 1
  • Manuel A. Rodrigo
    • 1
  1. 1.Department of Chemical EngineeringUniversidad de Castilla La ManchaCiudad RealSpain

Personalised recommendations