Skip to main content
Log in

Effect of ethylene glycol on electrochemical and morphological features of platinum electrodeposits from chloroplatinic acid

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The aim of this work was to investigate the morphology, average size, and the electrochemical behavior of platinum nanoparticles electrodeposited from water and mixed water–ethylene glycol solutions of the electrolyte of H2PtCl6 and H2SO4 at a rotating disk electrode coated with Vulcan XC-72 carbon powder. Cyclic voltammetry and linear sweep voltammetry were used to determine the electrochemically active surface area (ESA) and oxygen reduction reaction (ORR) activity of the prepared Pt/C materials, respectively. XRD and scanning electron microscopy were used to study the influence of the electrodeposition methods applied on the morphology of platinum particles deposited in water and mixed water–ethylene glycol solutions. The average size of Pt crystallites was in the range of ca. 6–10 nm, and the average size of deposited Pt particles was in the range of ca. 30–150 nm. It was found that the presence of ethylene glycol in the electrolyte solution increased the overpotential of electrodeposition and it also strongly affected the morphology of Pt deposits when constant current electrodeposition was employed. Moreover, it was shown that pulse current electrodeposition is a more effective method compared to constant current electrodeposition method for the preparation of the Pt/Vulcan electrode with high ESA of Pt and enhanced catalytic activity toward ORR. The results obtained concerning the morphology and the spatial distribution of platinum particles electrodeposited on the surface of carbon support at different conditions demonstrate new possibilities to improve synthesis of Pt/C by electrodeposition methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dini JW (1993) Electrodeposition: the materials science of coatings and substrates. Noyes Publications, Park Ridge

    Google Scholar 

  2. Paoletti C, Cemmi A, Giorgi L, Giorgi R, Pilloni L, Serra E, Pasquali M (2008) Electro-deposition on carbon black and carbon nanotubes of Pt nanostructured catalysts for methanol oxidation. J Power Sources 183:84–91. doi:10.1016/j.jpowsour.2008.04.083

    Article  CAS  Google Scholar 

  3. Zhang C, Yu H, Li Y, Song W, Yi B, Shao Z (2012) Preparation of Pt catalysts decorated TiO2 nanotube arrays by redox replacement of Ni precursors for proton exchange membrane fuel cells. Electrochim Acta 80:1–6. doi:10.1016/j.electacta.2012.05.162

    Article  CAS  Google Scholar 

  4. Habibi B, Pournaghi-Azar MH, Razmi H, Abdolmohammad-Zadeh H (2008) Electrochemical preparation of a novel, effective and low cast catalytic surface for hydrogen evolution reaction. Int J Hydrog Energy 33:2668–2678. doi:10.1016/j.ijhydene.2008.03.014

    Article  CAS  Google Scholar 

  5. Dong L, Gari RRS, Li Z, Craig MM, Hou S (2010) Graphene-supported platinum and platinum–ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon 48:781–787. doi:10.1016/j.carbon.2009.10.027

    Article  CAS  Google Scholar 

  6. Paulus UA, Schmidt TJ, Gasteiger HA, Behm RJ (2001) Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. J Electroanal Chem 495:134–145. doi:10.1016/S0022-0728(00)00407-1

    Article  CAS  Google Scholar 

  7. Shen PK, Tian Z (2004) Performance of highly dispersed Pt/C catalysts for low temperature fuel cells. Electrochim Acta 49:3107–3111. doi:10.1016/j.electacta.2004.02.024

    Article  CAS  Google Scholar 

  8. Li W, Liang C, Zhou W, Qiu J, Zhou Z, Sun G, Xin Q (2003) Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. J Phys Chem 107:6292–6299. doi:10.1021/jp022505c

    Article  CAS  Google Scholar 

  9. Liang Y, Zhang H, Yi B, Zhang Z, Tan Z (2005) Preparation and characterization of multi-walled carbon nanotubes supported Pt Ru catalysts for proton exchange membrane fuel cells. Carbon 43:3144–3152

    Article  CAS  Google Scholar 

  10. Ye F, Hu W, Zhang T, Yang J, Ding Y (2012) Enhanced electrocatalytic activity of Pt-nanostructures prepared by electrodeposition using poly(vinyl pyrrolidone) as a shape-control agent. Electrochim Acta 83:383–386

    Article  CAS  Google Scholar 

  11. Ho VTT, Nguyen NG, Pan C, Cheng J, Rick J, Su W, Lee J, Sheu H, Hwang B (2012) Advanced nanoelectrocatalyst for methanol oxidation and oxygen reduction reaction, fabricated as one-dimensional Pt nanowires on nanostructured robust Ti0.7Ru0.3O2 support. Nano Energy 1:687–695. doi:10.1016/j.nanoen.2012.07.007

    Article  CAS  Google Scholar 

  12. Frelink T, Visscher W, Van Veen JAR (1995) Particle size effect of carbon-supported platinum catalysts for the electrooxidation of methanol. J Electroanal Chem 382:65–72. doi:10.1016/0022-0728(94)03648-M

    Article  Google Scholar 

  13. Gasteiger HA, Kocha SS, Bhaskar S, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, a reduction catalysts for PEMFCs. Appl Catal B Environ. doi:10.1016/j.apcatb.2004.06.021

    Google Scholar 

  14. Guo S, Wang E (2011) Noble metal nanomaterials controllable synthesis and application in fuel cells and analytical sensors. Nano Today 6:240–264. doi:10.1016/j.nantod.2011.04.007

    Article  CAS  Google Scholar 

  15. Antolini E (2009) Carbon supports for low-temperature fuel cell catalysts. Appl Catal B 88:1–24. doi:10.1016/j.apcatb.2008.09.030

    Article  CAS  Google Scholar 

  16. Ralph TR, Hogarth MP (2002) Catalysis for low temperature fuel cells, vol 46. Johnson Matthey Public Limited Company, Hatton Garden, p 4

    Google Scholar 

  17. Shao Y, Liu J, Wang Y, Lin Y (2009) Novel catalyst support materials for PEM fuel cells: current status and future prospects. J Mater Chem 19:46–59. doi:10.1039/b808370c

    Article  CAS  Google Scholar 

  18. Domнnguez-Domнnguez S, Arias-Pardilla J, Berenguer-Murcia Б, Morallyn E, Cazorla-Amorys D (2008) Electrochemical deposition of platinum nanoparticles on different carbon supports and conducting polymers. J Appl Electrochem 38:259–268. doi:10.1007/s10800-007-9435-9

    Article  Google Scholar 

  19. Feng JJ, Li AQ, Wang AJ, Lei Z, Chen JR (2011) Electrodeposition of monodispersed platinum nanoparticles on a glassy carbon electrode for sensing methanol. Microchim Acta 173:383–389. doi:10.1007/s00604-011-0566-7

    Article  CAS  Google Scholar 

  20. Tang H, Chen JH, Huang ZP, Wang DZ, Ren ZF, Nie LH, Kuang YF, Yao SZ (2004) High dispersion and electrocatalytic properties of platinum on well-aligned carbon nanotube arrays. Carbon 42:191–197. doi:10.1016/j.carbon.2003.10.023

    Article  CAS  Google Scholar 

  21. Zhang L, Fang Z, Zhao GC, Wei XW (2008) Electrodeposited platinum nanoparticles on the multi-walled carbon nanotubes and its electrocatalytic for nitric oxide. Int J Electrochem Sci 3:746–754

    Google Scholar 

  22. Wei ZD, Chan SH, Li LL, Cai HF, Xia ZT, Sun CX (2005) Electrodepositing Pt on a Nafion-bonded carbon electrode as a catalyzed electrode for oxygen reduction reaction. Electrochim Acta 50:2279–2287. doi:10.1016/j.electacta.2004.10.054

    Article  CAS  Google Scholar 

  23. Santiago D, Rodrнguez-Calero GG, Rivera H, Tryk DA, Scibioh MA, Cabrera CR (2010) Platinum electrodeposition at high surface area carbon Vulcan XC-72 material using a rotating disk-slurry electrode technique. J Electrochem Soc 157:F189–F195. doi:10.1149/1.3489948

    Article  CAS  Google Scholar 

  24. Misoon O, Seok K (2012) Electrochemical properties of carbon-supported metal nanoparticles prepared by electroplating methods. Electroplating 166:1–28. doi:10.5772/33682

    Google Scholar 

  25. Zeng J, Lee JY, Zhou W (2006) Activities of Pt/C catalysts prepared by low temperature chemical reduction methods. Appl Catal A 308:99–104. doi:10.1016/j.apcata.2006.04.019

    Article  CAS  Google Scholar 

  26. Lin C, Khan MR, Lin SD (2006) The preparation of Pt nanoparticles by methanol and citrate. J Colloid Interface Sci 299:678–685. doi:10.1016/j.jcis.2006.03.003

    Article  CAS  Google Scholar 

  27. Kim H, Subramanian NP, Popov BN (2004) Preparation of PEM fuel cell electrodes using pulse electrodeposition. J Power Sources 138P:14–24. doi:10.1016/j.jpowsour.2004.06.012

    Article  Google Scholar 

  28. He Z, Chen J, Liu D, Zhou H, Kuang Y (2004) Electrodeposition of Pt–Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation. Diam Relat Mater 13:1764–1770. doi:10.1016/j.diamond.2004.03.004

    Article  CAS  Google Scholar 

  29. Natter H, Hempelmann R (2003) Tailor-made nanomaterials designed by electrochemical methods. Electrochim Acta 49(1):51–61. doi:10.1016/j.electacta.2003.04.004

    Article  CAS  Google Scholar 

  30. Guterman VE, Pakharev AY, Tabachkova NY (2013) Microstructure and size effects in Pt/C and Pt3Ni/C electrocatalysts synthesised in solutions based on binary organic solvents. Appl Catal A 453:113–120

    Article  CAS  Google Scholar 

  31. Leontyev IN, Belenov SV, Guterman VE, Haghi-Ashtiani P, Shaganov A, Dkhil B (2011) J Phys Chem C 115:5429–5434. doi:10.1021/jp1109477

    Article  CAS  Google Scholar 

  32. Zarkadas G, Stergiou A, Papanastasiou G (2005) Influence of citric acid on the silver electrodeposition from aqueous AgNO3 solutions. Electrochim Acta 50:5022–5031. doi:10.1016/j.electacta.2005.02.081

    Article  CAS  Google Scholar 

  33. Fukui R, Katayama Y, Miura T (2011) The effect of organic additives in electrodeposition of Co from an amide-type ionic liquid. Electrochim Acta 56:1190–1196. doi:10.1016/j.electacta.2010.10.074

    Article  CAS  Google Scholar 

  34. Sieben JM, Duarte MM, Mayer CE (2011) Influence of alcohol additives in the preparation of electrodeposited Pt–Ru catalysts catalyst on oxidized graphite cloths. J Alloy Compd 509:4002–4009

    Article  CAS  Google Scholar 

  35. Quinet M, Lallemand F, Ricq L, Hihn J-Y, Delobelle P, Arnould C, Mekhalif Z (2009) Influence of organic additives on the initial stages of copper electrodeposition on polycrystalline platinum. Electrochim Acta 54:1529–1536. doi:10.1016/j.electacta.2008.09.052

    Article  CAS  Google Scholar 

  36. Tzeng GS, Lin SH, Wang YY, Wan CC (1996) Effects of additives on the electrodeposition of Tin from an acidic Sn (II) bath. J Appl Electrochem 26:419–423. doi:10.1007/BF00251327

    CAS  Google Scholar 

  37. Carlos IA, Souza CAC, Pallone EMJA, Francisco RHP, Cardoso V, Lima-Neto BS (2000) Effect of tartrate on the morphological characteristics of the copper–tin electrodeposits from a noncyanide acid bath. J Appl Electrochem 30:987–994. doi:10.1023/A:1004047110057

    Article  CAS  Google Scholar 

  38. Kim JW, Lee JY, Park SM (2004) Effects of organic additives on zinc electrodeposition at iron electrodes studied by EQCM and in situ STM. Langmuir 20:459–466. doi:10.1021/la0347556

    Article  CAS  Google Scholar 

  39. Matsumoto T, Komatsu T, Nakano H, Arai K, Nagashima Y, Yoo E, Yamazaki T et al (2004) Efficient usage of highly dispersed Pt on carbon nanotubes for electrode catalysts of polymer electrolyte fuel cells. Catal Today 90:277–281. doi:10.1016/j.cattod.2004.04.038

    Article  CAS  Google Scholar 

  40. Bock C, Paquet C, Couillard M, Botton GA, MacDougall BR (2004) Size-selected synthesis of Pt Ru nano-catalysts: reaction and size control mechanism. J Am Chem Soc 126:8028–8037. doi:10.1021/ja0495819

    Article  CAS  Google Scholar 

  41. Guterman VE, Belenov SV, Dymnikova OV, Lastovina TA, Konstantinova YB, Prutsakova NV (2009) Influence of water-organic solvent composition on composition and structure of Pt/C and PtXNi/C electrocatalysts in borohydride synthesis. Inorg Mater 45:498–505. doi:10.1134/S1023193511080052

    Article  CAS  Google Scholar 

  42. Leontyev IN, Guterman VE, Pakhomova EB, Timoshenko PE, Guterman AV, Zakharchenko IN, Petin GP, Dkhil B (2010) XRD and electrochemical investigation of particle size effects in platinum–cobalt cathode electrocatalysts for oxygen reduction. J Alloy Compd 500:241–246. doi:10.1016/j.jallcom.2010.04.018

    Article  CAS  Google Scholar 

  43. Tsai MC, Yeh TK, Tsai CH (2006) An improved electrodeposition technique for preparing platinum and platinum–ruthenium nanoparticles on carbon nanotubes directly grown on carbon cloth for methanol oxidation. Electrochem Commun 8:1445–1452. doi:10.1016/j.elecom.2006.07.003

    Article  CAS  Google Scholar 

  44. Bard AJ, Faulkner LR (1980) Electrochemical methods fundamentals and applications. Wiley, New York, p 339

    Google Scholar 

  45. Yohannes W, Belenov SV, Guterman VE, Skibina LM, Lyanguzov NV (2014) Study of effect of applied current and deposition time on electrochemically active surface area and microstructure of platinum nanomaterials. Proceedings of ICANM 2014: international conference & exhibition on advanced & nano materials, Calgary, pp 161–172

  46. Chen X, Li N, Eckhard K, Stoica L, Xia W, Assmann J, Schuhmann W (2007) Pulsed electrodeposition of Pt nanoclusters on carbon nanotubes modified carbon materials using diffusion restricting viscous electrolytes. Electrochem Commun 9:1348–1354. doi:10.1016/j.elecom.2007.01.034

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Grant of Southern Federal University: No 213.01-2014/005VG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Guterman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yohannes, W., Belenov, S.V., Guterman, V.E. et al. Effect of ethylene glycol on electrochemical and morphological features of platinum electrodeposits from chloroplatinic acid. J Appl Electrochem 45, 623–633 (2015). https://doi.org/10.1007/s10800-015-0820-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0820-5

Keywords

Navigation