Journal of Applied Electrochemistry

, Volume 45, Issue 2, pp 151–159 | Cite as

Electrochemical oxidation and removal of arsenic using water-soluble polymers

  • Julio Sánchez
  • Bryan Butter
  • Bernabé L. Rivas
  • Luis Basáez
  • Paola Santander
Research Article
Part of the following topical collections:
  1. Sensors and Electrochemical Methods


In this work, the electrochemical oxidation of arsenite and its subsequent removal was studied using water-soluble poly[glycidyl methacrylate N-methyl-d-glucamine], P(GMA–NMG), and poly[2-(acryloyloxy)ethyl]trimethylammonium chloride, P(ClAETA). In the first stage, the electroanalysis of arsenic (via oxidation of arsenite to arsenate) by cyclic voltammetry in the presence of water-soluble polymers was conducted. The type of polymer, electrode (gold or platinum), polymer concentration, and pH were evaluated. The study indicated that using P(GMA–NMG) and a gold electrode, oxidation peaks were obtained at approximately +0.5 V versus Ag/AgCl. In the case of P(ClAETA), wide oxidation peaks were obtained at +0.8 V versus Ag/AgCl using a platinum electrode. The optimum concentration for both polymers was 0.05 mol L−1. For P(GMA–NMG), the oxidation potential was influenced by a change of pH. The quantitative oxidation of As(III) to As(V) was conducted using metallic electrodes with higher surface areas. The conversion of arsenic as a function of applied potential was also evaluated. The results showed an efficient oxidation in the presence of both water-soluble polymers. Finally, 60 % of the As(V) could be removed through polymer-enhanced ultrafiltration. The results demonstrated an increase in the removal of pre-oxidized arsenic.


Arsenic oxidation Electroanalysis Ultrafiltration Water remediation Water-soluble polymers 



The authors thank the FONDECYT (Project No. 1110079), FONDECYT (postdoctoral Grant No. 3120048), DIUC (211.021.030-1.0), PIA (Anillo ACT-130), REDOC (MINEDUC project UCO1202 at U. de Concepción), and CIPA, Chile.


  1. 1.
    Cullen RW, Reimer K (1989) Arsenic speciation in the environment. Chem Rev 89:713–764CrossRefGoogle Scholar
  2. 2.
    Fergusson JF, Gavis J (1972) A review of the arsenic cycle in nature waters. Water Res 6:1259–1274CrossRefGoogle Scholar
  3. 3.
    Welch AH, Westjohn DB, Helsel DR, Wanty RB (2000) Arsenic in ground water of the United States: occurrence and geochemistry. Groundwater 38:589–604CrossRefGoogle Scholar
  4. 4.
    Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568CrossRefGoogle Scholar
  5. 5.
    Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235CrossRefGoogle Scholar
  6. 6.
    Hung DQ, Nekrassova O, Compton RG (2004) Analytical methods for inorganic arsenic in water: a review. Talanta 64:269–277CrossRefGoogle Scholar
  7. 7.
    Feeney R, Kounaves SP (2002) Voltammetric measurement of arsenic in natural waters. Talanta 58:23–31CrossRefGoogle Scholar
  8. 8.
    Cavicchioli A, La-Scalea MA, Gutz IGR (2004) Analysis and speciation of traces of arsenic in environmental, food and industrial samples by voltammetry: a review. Electroanalysis 16:697–711CrossRefGoogle Scholar
  9. 9.
    Gamboa JCM, Cornejo L, Squella JA (2014) Vibrating screen printed electrode of gold nanoparticle-modified carbon nanotubes for the determination of arsenic(III). J Appl Electrochem. doi: 10.1007/s10800-014-0727-6 Google Scholar
  10. 10.
    Dai X, Nekrassova O, Hyde ME, Compton RG (2004) Anodic stripping voltammetry of arsenic(III) using gold nanoparticle-modified electrodes. Anal Chem 76:5924–5929CrossRefGoogle Scholar
  11. 11.
    Majid E, Hrapovic S, Liu Y, Male KB, Luong JHT (2006) Electrochemical determination of arsenite using a gold nanoparticle modified glassy carbon electrode and flow analysis. Anal Chem 78:762–769CrossRefGoogle Scholar
  12. 12.
    Dai X, Compton RG (2006) Detection of As(III) via oxidation to As(V) using platinum nanoparticle modified glassy carbon electrodes: arsenic detection without interference from copper. Analyst 131:516–521CrossRefGoogle Scholar
  13. 13.
    Dai X, Compton RG (2005) Gold nanoparticle modified electrodes show a reduced interference by Cu(II) in the detection of As(III) using anodic stripping voltammetry. Electroanalysis 17:1325–1330CrossRefGoogle Scholar
  14. 14.
    Litter MI, Morgada ME, Bundschuh J (2010) Possible treatments for arsenic removal in Latin American waters for human consumption. Environ Pollut 158:1105–1118CrossRefGoogle Scholar
  15. 15.
    Sánchez J, Rivas BL (2010) Arsenic extraction from aqueous solution: electrochemical oxidation combined with ultrafiltration membranes and water-soluble polymers. Chem Eng J 165:625–632CrossRefGoogle Scholar
  16. 16.
    Leupin OX, Hug SJ (2005) Oxidation and removal of arsenic(III) from aerated groundwater by filtration through sand and zero-valent iron. Water Res 39:1729–1740CrossRefGoogle Scholar
  17. 17.
    Rivas BL, Aguirre MC, Pereira E, Bucher C, Royal G, Limosin D, Saint-Aman E, Moutet J-C (2009) Off-line coupled electrocatalytic oxidation and liquid phase polymer based retention (EO-LPR) techniques to remove arsenic from aqueous solutions. Water Res 43:515–521CrossRefGoogle Scholar
  18. 18.
    Sánchez J, Rivas BL, Pooley SA, Basaez L, Pereira E, Pignot-Paintrand I, Royal G, Saint-Aman E, Bucher C, Moutet J-C (2010) Electrocatalytic oxidation of As(III) to As(V) using noble metal–polymer nanocomposites. Electrochim Acta 55:4876–4882CrossRefGoogle Scholar
  19. 19.
    Rivas BL, Aguirre MC, Pereira E, Bucher C, Moutet J-C, Saint-Aman E, Royal G (2011) Efficient polymers in conjunction with membranes to remove As(V) generated in situ by electrocatalytic oxidation. Polym Adv Technol 22:414–419CrossRefGoogle Scholar
  20. 20.
    Rivas BL, Pereira ED, Palencia M, Sánchez J (2011) Water-soluble functional polymers in conjunction with membranes to remove pollutant ions from aqueous solutions. Prog Polym Sci 36:294–322CrossRefGoogle Scholar
  21. 21.
    Moreno-Villoslada I, Rivas BL (2002) Competition of divalent metal ions with monovalent metal ions on the adsorption on water-soluble polymers. J Phys Chem B 106:9708–9711CrossRefGoogle Scholar
  22. 22.
    Rivas BL, Pooley SA, Luna M (2000) Chelating properties of poly(N-acryloyl piperazine) by liquid-phase polymer-based retention (LPR) technique. Macromol Rapid Commun 21:905–908CrossRefGoogle Scholar
  23. 23.
    Rivas BL, Pereira ED, Cid R, Geckeler K (2005) Polyelectrolyte-assisted removal of metal ions with ultrafiltration. J Appl Polym Sci 95:1091–1099CrossRefGoogle Scholar
  24. 24.
    Rivas BL, Moreno-Villoslada I (2000) Effect of the polymer concentration on the interactions of water-soluble polymers with metal ions. Chem Lett 2:166–167CrossRefGoogle Scholar
  25. 25.
    Rivas BL, Moreno-Villoslada I (2000) Poly[acrylamide-co-1-(2-hydroxyethyl) aziridine]: an efficient water-soluble polymer for selective separation of metal ions. J Appl Polym Sci 69:817–824CrossRefGoogle Scholar
  26. 26.
    Toledo L, Rivas BL, Urbano BF, Sánchez J (2013) Novel N-methyl-D-glucamine-based water-soluble polymer and its potential application in the removal of arsenic. Sep Purif Technol 103:1–7CrossRefGoogle Scholar
  27. 27.
    Sánchez J, Rivas BL, Nazar E, Bryjak M, Kabay N (2013) Boron removal by liquid-phase polymer-based retention technique using poly(glycidyl methacrylate N-methyl D-glucamine). J Appl Polym Sci 162:1541–1545CrossRefGoogle Scholar
  28. 28.
    Ottakam Thotiyl MM, Basit H, Sánchez J, Goyer C, Coche-Guerente L, Dumy P, Sampath S, Labbé P, Moutet J-C (2012) Multilayer assemblies of polyelectrolyte–gold nanoparticles for the electrocatalytic oxidation and detection of arsenic(III). J Colloid Interface Sci 383:130–139CrossRefGoogle Scholar
  29. 29.
    Rivera JF, Bucher C, Saint-Aman E, Rivas BL, Aguirre MC, Sanchez J, Pignot-Paintrand I, Moutet JC (2013) Removal of arsenite by coupled electrocatalytic oxidation at polymer–ruthenium oxide nanocomposite and polymer-assisted liquid phase retention. Appl Catal B 129:130–136CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Julio Sánchez
    • 1
  • Bryan Butter
    • 1
  • Bernabé L. Rivas
    • 1
  • Luis Basáez
    • 1
  • Paola Santander
    • 1
  1. 1.Faculty of ChemistryUniversity of ConcepciónConcepciónChile

Personalised recommendations