Skip to main content
Log in

Comparison of oxidized carbon nanotubes for Li-ion storage capacity

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Oxidized carbon nanotubes, oxCNTs, were formed when multi-walled carbon nanotubes were treated by chemical oxidation with acidic potassium permanganate. The synthesis and characterization of oxidized multi-walled carbon nanotubes of five diameter ranges for use as anode materials in lithium-ion battery applications is detailed herein. Thermogravimetric analysis and typical spectroscopic methods confirmed extensive oxidation, while X-ray photoelectron spectroscopy comparisons provided quantification of specific components. Images from high-resolution transmission electron microscopy indicated a change in structure associated with the oxidation as X-ray diffraction peaks indicated broadening interplanar spacing. This study confirmed that the oxidative process successfully led to oxCNTs, with a reversible capacity demonstratively higher than their parent multi-walled carbon nanotubes. Higher capacities were demonstrated in smaller-diameter oxCNTs, and associated with structural and compositional differences between the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. A vigorous preliminary mixing of the components was done as follows: 120 min sulfuric acid and MWCNTs, 60 min with added phosphoric acid, 60 min with added potassium permanganate.

References

  1. Bradwell DJ, Kim H, Sirk AHC, Sadoway DR (2012) J Am Chem Soc 134(4):1895–1897

    Article  CAS  Google Scholar 

  2. Liang MH, Zhi LJ (2009) J Mater Chem 19(33):5871–5878

    Article  CAS  Google Scholar 

  3. Uthaisar C, Barone V (2010) Nano Lett 10:2838–2842

    Article  CAS  Google Scholar 

  4. Bhardwaj T, Antic A, Pavan B, Barone V, Fahlman BD (2010) J Am Chem Soc 132:12556–12558

    Article  CAS  Google Scholar 

  5. Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Nature 458(7240):872–876

    Article  CAS  Google Scholar 

  6. Yang S, Hou J, Song H, Chen X (2008) Electrochim Acta 53:2238–2244

    Article  CAS  Google Scholar 

  7. Santos RPB, Perim E, Autreto PAS, Brunettp G, Galvao DS (2012) Nanotechnology 23:465702

    Article  Google Scholar 

  8. Rangel NL, Sotelo JC, Seminario JM (2009) J Chem Phys 131:031105

    Article  Google Scholar 

  9. Higginbotham AL, Kosynkin VV, Sinitskii A, Sun Z, Tour JM (2010) ACS Nano 4(4):2059–2069

    Article  CAS  Google Scholar 

  10. Lu X, Zhang L, Zu X, Wang N, Zhang Q (2002) J Phys Chem B 106:2136–2139

    Article  CAS  Google Scholar 

  11. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Nature 442:04969

    Article  Google Scholar 

  12. Jiao L, Wang X, Diankov G, Wang H, Dai H (2010) Nat Nanotechnol 5:321–325

    Article  CAS  Google Scholar 

  13. Shen J, Hu Y, Li C, Qin C, Shi M, Ye M (2009) Langmuir 25(11):6122–6128

    Article  CAS  Google Scholar 

  14. Hanawalt JD et al (1938) Anal Chem 10:475

    Google Scholar 

  15. Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov C, Huffman CB, Rodrigues-Macias F, Shon Y, Lee RT, Colbert DT, Smalley RE (1998) Science 280:1253–1256

    Article  CAS  Google Scholar 

  16. Cataldo F, Compagnini G, D’Urso L, Palleschi G, Valentini F, Angelini G, Braun T (2010) Characterization of graphene nanoribbons from the unzipping of MWCNTs. Fuller Nanotub Carbon Nanostruct 18(3):261–272

    Article  CAS  Google Scholar 

  17. Avinash MB, Subrahmanyam KS, Sundarayya Y, Govindaraju T (2010) Nanoscale 2:1762–1766

    Article  CAS  Google Scholar 

  18. Lerf A, He H, Forster M, Klinowski J (1998) J Phys Chem B 102:4477–4482

    Article  CAS  Google Scholar 

  19. Lahiri I, Oh S, Hwang JY, Cho S, Sun Y, Banerjee R, Choi W (2010) Nano 4(6):3440–3446

    CAS  Google Scholar 

  20. Kawasaki S, Iwai Y, Hirose M (2009) Carbon 47:1081–1086

    Article  CAS  Google Scholar 

  21. Placke T, Siozios V, Schitz R, Lux SF, Bieker P, Colle C, Meyer H-W, Passerini S, Winter M (2012) J Power Sources 200:83–91

    Article  CAS  Google Scholar 

  22. Marom R, Amalraj FS, Leifer N, Jacob D, Aurbach D (2011) J Mater Chem 21:9938–9954

    Article  CAS  Google Scholar 

  23. Aurbach D, Markovsky B, Nimberger LE, Gofer Y (2002) J Electrochem Soc 149:152–161

    Article  Google Scholar 

  24. Peled E, Menachem C, BarTow D, Melman A (1996) J Electrochem Soc 143:1

    Article  Google Scholar 

  25. Li H, Wang ZX, Chen LQ, Huang XJ (2009) Adv Mater 21(45):4593–4607

    Article  Google Scholar 

  26. Petkov V, Timmons A, Camardese J, Ren Y (2011) J Phys 23:435003

    Google Scholar 

  27. Aurbach D (2003) J Power Sources 119–121:497

    Article  Google Scholar 

Download references

Acknowledgments

We also wish to thank Dr. Xudong Fan at the Center for Advanced Microscopy at Michigan State University for high-resolution TEM imaging, Dr. Haiping Sun at University of Michigan’s EMAL for XPS sample processing, and Phil Oshel at Central Michigan University’s Microscopy Lab for support of imaging and processing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Veronica Barone or Bradley D. Fahlman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2453 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antic, A., Barone, V. & Fahlman, B.D. Comparison of oxidized carbon nanotubes for Li-ion storage capacity. J Appl Electrochem 45, 161–167 (2015). https://doi.org/10.1007/s10800-014-0784-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-014-0784-x

Keywords

Navigation